
Lecture 12: The C Standard Library Part 1
COMP26020 Part 1 (C) Lecture Notes

Pierre Olivier

These notes summarise the important points mentioned in the lectures. They are supposed to be a help for revising
and not a way to avoid attending the live lectures and watching the videos. In other words, live lectures and videos
may include examinable content that is not present in these notes.

The slides for this lecture are available here:
https://olivierpierre.github.io/comp26020-lectures/12-standard-library-1.

Videos and recordings of live sessions can be found on the video portal: https://video.manchester.ac.uk/lectures.

In this lecture we start discussing the C standard library, a set of functions you can use in your C programs to
realise various low-level tasks. We cover functions regarding string and memory manipulation, console input, math
and time.

Manual Pages
We already came across a few functions of the standard library, such as printf or malloc. For every function of the
standard library, man <function name> in a Linux terminal will give you everything you need to know to use that
function: function description, prototype, required headers, return value. Manual pages are also available online,
e.g. for printf: https://man7.org/linux/man-pages/man3/printf.3.html.

String Copy
The = operator should not be used to copy a string in C. Remember that strings are arrays, and arrays are pointer.
So effectively with = one just creates a copy of the pointer that points to the same array’s content.

A proper string copy is realised with strcpy:

char *strcat(char *dest, const char *src);

It takes the destination string as first parameter, and the source string as parameter. The const keyword is simply
there to indicate that strcpy will not modify the src parameter. Care should be taken with respect to the sizes of
the strings: if the destination buffer is smaller than the source string, it will overflow and a memory error will occur.

strncpy is somehow safer than strcpy as it accepts a 3rd argument, n, and copies only up to n bytes:

char *strncat(char *dest, const char *src, size_t n);

n can for example be set to the size of the destination space to avoid overflows.

Note that both strcpy and strncpy do copy the termination character. Below is an example of usage of both
functions:

#include <string.h> // needed for strcpy/strncpy
/* ... */

char *string1 = "hello";
char *string2 = string1; // this is not a string copy!
char string3[10]; // allocated space of 10 bytes, it's called a buffer

1

https://olivierpierre.github.io/comp26020-lectures/12-standard-library-1
https://video.manchester.ac.uk/lectures
https://man7.org/linux/man-pages/man3/printf.3.html

/* not super safe, what if the length of string1 is larger than the 10 bytes of string3? */
strcpy(string3, string1);
/* better */
strncpy(string3, string1, 10);

In this example, string3 corresponds to a region of contiguous memory, writable, used to hold data: it is called a
buffer.

String Concatenation
To concatenate two strings, use strcat or strncat:

char *strcat(char *dest, const char *src);
char *strncat(char *dest, const char *src, size_t n);

strcat takes two parameters, a destination and source strings. In effect, it concatenates the source at the end of
the destination. Once again the programmer needs to consider the buffer sizes. Same as strncpy, strncat can be
used to concatenate up to a given number of characters. Here is an example of usage of both functions:

#include <string.h>
/* ... */
char world[6] = "world";
char s1[32] = "hello ";
char s2[32] = "hello ";
strcat(s1, world); // possibly unsafe
strncat(s2, world, 32); // better

Format-based String Creation
sprintf is a useful function to create a string that is filled with values from variables of various type. This is done
with printf-like specifiers:

int sprintf(char *str, const char *format, ...);

It takes as parameter the destination string. Then, a constant string filled with text as well as specifiers, same as with
printf. Then, a list of variables or expression corresponding to the specifiers, like with printf. The destination
string should be large enough to avoid memory errors. Here is an example of usage:

#include <string.h>

int main(int argc, char **argv) {
int a = 12;
float b = 4.5;
char *s = "hello";
char string[64];

sprintf(string, "a is %d, b is %f, s is %s\n", a, b, s);
printf("%s", string); // a is 12, b is 4.500000, s is hello
return 0;

}

String Length and Comparison
To get the size of a string, in characters, use strlen:

size_t strlen(const char *s);

Note that this function does not count the termination character. To compare two strings, use strcmp:

int strcmp(const char *s1, const char *s2);

2

It returns 0 if the string matches, a negative number if s1 is before s2 in the lexicographical order, and a positive
one if s1 is after s2. Here is an example of usage of both functions:

#include <string.h>
/* ... */
char *s1 = "hello"; char *s2 = "hello";
char *s3 = "not hello";

printf("strcmp(s1, s2) returns: %d\n", strcmp(s1, s2)); // 0
printf("strcmp(s1, s3) returns: %d\n", strcmp(s1, s3)); // -6

printf("length of s3: %d\n", strlen(s3)); // 9

For more information about string manipulation functions type man string in a terminal. Further resources are
also available online1

Console Input
fgets receives a string from the console:

char *fgets(char *s, int size, FILE *stream);

It takes the destination buffer as first parameter, the size of that buffer, and the special keyword stdin that indicate
the standard input. The program will then read what is typed on the keyboard until the user presses enter.

To input numbers one should rather use scanf.=:

int scanf(const char *format, ...);

It takes a printf-like format string, with specifiers for the variable we wish to update the value based on the user
input. Then we have the addresses of the variables in question. Below is an example of usage of both functions:

int main(int argc, char **argv) {
int int1, int2;
double double1;
float float1;
char s[128];

printf("Please input a string:\n");
fgets(s, 128, stdin);

printf("Please input an integer:\n");
scanf("%d", &int1);

printf("Please input a float:\n");
scanf("%lf", &double1); /* make sure to us %lf for double and %f for float */

printf("Please enter an integer and a float separated by a space\n");
scanf("%d %f", &int2, &float1);

printf("You have entered: %d, %d, %lf, %f, and %s\n", int1, int2, double1,
float1, s);

return 0;
}

Writing Bytes to Memory, Copying Memory
memset repeatedly writes the byte c, n times starting from address s:

void *memset(void *s, int c, size_t n);
1https://en.wikibooks.org/wiki/C_Programming/String_manipulation.

3

https://en.wikibooks.org/wiki/C_Programming/String_manipulation

It can be useful for example when you want to zero out a buffer.

memcpy copies a buffer into another one:

void *memcpy(void *dest, void *src, size_t n);

An example of usage of both functions is presented below:

#include <stdio.h>
#include <string.h> // needed for memcpy and memset
#include <stdlib.h>

int main(int argc, char **argv) {
int buffer_size = 10;

char *ptr1 = malloc(buffer_size);
char *ptr2 = malloc(buffer_size);

if(ptr1 && ptr2) {
memset(ptr1, 0x40, buffer_size); // 0x40 is ascii code for @
memcpy(ptr2, ptr1, buffer_size);
for(int i=0; i<buffer_size; i++) {

printf("ptr1[%d] = %c\n", i, ptr1[i]);
printf("ptr2[%d] = %c\n", i, ptr2[i]);

}
free(ptr1); free(ptr2);

}
return 0;

}

Math Functions
There are a few: square root, power, cosinus, amongst many others. Most have a float and double version, for
example ceil and ceilf. Here is an example with a few calls to some math functions:

// When compiling a program using math.h, // use -lm on the command line:
// gcc program.c -o program -lm
#include <stdio.h>
#include <math.h> // needed for math functions

int main(int argc, char **argv) {
printf("ceil 2.5: %f\n", ceil(2.5));
printf("floor 2.5: %f\n", floor(2.5));
printf("2ˆ5: %f\n", pow(2, 5));
printf("sqrt(4): %f\n", sqrt(4));
return 0;

}

The full list of available functions can be found online2. Note that when building a program using math functions,
you need to use a specific -lmflag when you call the compiler:

gcc src.c -o program -lm

Sleeping
To have the program wait for a given time one can use sleep for sleeping in seconds, and usleep for sleeping in
microseconds:

2https://cplusplus.com/reference/cmath/

4

https://cplusplus.com/reference/cmath/

unsigned int sleep(unsigned int seconds);
int usleep(useconds_t usec);

It is useful in certain applications that generally have an infinite main loop, but don’t want to hang 100% of the
CPU, such as servers. Here is a code example:

#include <stdio.h>
#include <unistd.h> // needed for sleep and usleep

int main(int argc, char **argv) {
printf("hello!\n");

printf("Sleeping for 2 seconds ...\n");
sleep(2);

printf("Now sleeping for .5 seconds ...\n");
usleep(500000);
return 0;

}

Current Time
To get the current time thetime function can be used:

time_t time(time_t *tloc); // time_t is generally a long long unsigned int

A simple way to call it is with NULL as a parameter. It returns the number of seconds elapsed since the 1st of
January 1970, which is a standard timestamp for UNIX computers.

Measuring Execution Time
To get a more precise measurement of the current time we can use gettimeofday:

int gettimeofday(struct timeval *tv, struct timezone *tz);
// struct timeval {
// time_t tv_sec; /* seconds (type: generally long unsigned) */
// suseconds_t tv_usec; /* microseconds (type: generally long unsigned) */
// };

It takes a pointer to a struct timeval as parameter. This struct has two fields, one for seconds, tv_sec and the
other for microseconds, tv_usec. The second parameter should always be NULL. Like time it also returns the time
elapsed since the 1st of January 1970. gettimeofay is very useful to measure execution time, as shown in this
example:

#include <stdio.h>
#include <sys/time.h> // needed for gettimeofday

int main(int argc, char **argv) {
struct timeval tv, start, stop, elapsed;

gettimeofday(&tv, NULL);
printf("Seconds since the epoch: %lu.%06lu\n", tv.tv_sec, tv.tv_usec);

gettimeofday(&start, NULL);
for(int i=0; i<1000000000; i++);
gettimeofday(&stop, NULL);

timersub(&stop, &start, &elapsed);
printf("Busy loop took %lu.%06lu seconds\n", elapsed.tv_sec,

elapsed.tv_usec);

5

return 0;
}

3 struct timeval variables are declared. A first call to gettimeofay is done before the code for which we want to
measure the execution time. Here it is just a busy loop. A second call to gettimeofday is done right after that.
Then timersub is called to compute the difference between the two timestamps. Notice how a struct timeval is
printed, with "%lu.%06lu": this forces the inclusion of up to six leading zeroes if the microsecond value is inferior
to one million.

6

	Manual Pages
	String Copy
	String Concatenation
	Format-based String Creation
	String Length and Comparison
	Console Input
	Writing Bytes to Memory, Copying Memory
	Math Functions
	Sleeping
	Current Time
	Measuring Execution Time

