
Lecture 21: Case Study: C Standard Library
COMP26020 Part 1 (C) Lecture Notes

Pierre Olivier

These notes summarise the important points mentioned in the lectures. They are supposed to be a help for revising
and not a way to avoid attending the live lectures and watching the videos. In other words, live lectures and videos
may include examinable content that is not present in these notes.

The slides for this lecture are available here:
https://olivierpierre.github.io/comp26020-lectures/21-libc-case-study.

Videos and recordings of live sessions can be found on the video portal: https://video.manchester.ac.uk/lectures.

The C Standard Library
The C standard library, also abbreviated libc, is the library providing stdio.h, stdlib.h, etc., that we have been
using since the beginning of the course. It is written mostly in C, with a few bits of assembly. The default library
coming with Linux distribution such as Ubuntu/Debian or Fedora is the GNU Libc, Glibc1. It is very complex
and difficult to study, so in this le cture we will rather have a look at a simpler C standard library named Musl2.
Musl is a production ready C standard library, and is widely used: for example the Alpine Linux container-oriented
distribution ships with Musl as libc.

Using Musl
It is very easy to try out Musl. It can be downloaded, built, and used to build a small hello world C program as
follows:

Download musl
$ git clone https://github.com/ifduyue/musl.git

Compile it and install it locally
$ cd musl
$./configure --prefix=$PWD/prefix
$ make
$ make install

Write a hellow world and compile it against Musl rather than Glibc
Don't forget the -static
$./prefix/bin/musl-gcc hello-world.c -o hello-world -static
$./hello-world
$ hello world!

In the rest of this document we take a brief look at how the libc works, and why it makes sense for it to be written
in C. The main job of the C library is to interface the application with the operating system. To study this, let’s see
how Musl implements the function we have been using the most, printf. But before that, we need to understand
how the C Library request services from the OS, through system calls.

1https://www.gnu.org/software/libc/
2https://www.musl-libc.org/

1

https://olivierpierre.github.io/comp26020-lectures/21-libc-case-study
https://video.manchester.ac.uk/lectures
https://www.gnu.org/software/libc/
https://www.musl-libc.org/

System Calls
Letting application access the hardware directly is too dangerous. So applications use system calls (abbreviated
syscalls) to ask for services from the kernel, which is the only privileged entity that can directly manipulate the
hardware to do things like reading and writing from/to disk, sending and receiving packets to/from the network
card, printing to the console, etc. Syscalls are rarely made directly by the user code: the programmer rather calls
functions from the libc, which in turn takes care of invoking syscalls. For example, to print to the console, the
programmer calls printf, and if we look at its implementation within the libc code, we can see that it calls the
write syscall (or a variant of it like writev). Therefore, the libc provides wrappers to the user code around system
calls. Some wrappers have the same name as the system call in question such as write.

When a syscall is made, what happens under the hood is a bit more complex than a simple function call. There
is a world switch of the CPU execution state, from user mode to privileged (kernel) mode. There is a particular
convention on how this switch should happen, i.e. what are the machine instruction that user mode should issue to
indicate to the kernel what syscall to run, and with what parameters.

The System Call Application Binary Interface
On Intel x86-64, a system call is realised with the following machine instructions:

1. First the syscall number is put in the %rax register. This number identify uniquely a given syscall, you can see
the list of Linux syscalls and their numbers here: https://filippo.io/linux-syscall-table/.

• The syscall parameters are put in %rsi, %rdx, %r10, %r8, and %r9 (in order).
• Then the “syscall” instruction should be executed, this triggers a trap to the kernel and the OS will process

the syscall.
• When done the kernel place the syscall return value in %rax.

This is a convention put in place for communication between 2 entities: the program (that includes the libc) invoking
the system call, and the kernel receiving the call and processing it. These 2 entities are compiled separately, hence
for interacting they cannot use application programming interfaces (APIs), i.e. language level constructs such as
functions, like one would normally do within a single program or between a program and a library it compiles
against. They rather use directly machine instructions: it’s an application binary interface, ABI.

Musl’s Implementation of printf

printf is implemented in Musl’s sources in the src/stdio/printf.c file. It calls vfprintf, which calls printf_core,
which itself calls out. All of these functions are in src/stdio/vfprintf.c. Their job is to expand the token in
the string passed to printf (e.g. %d) with the value of the corresponding variables. For example, they transform
"hello: %d, %lf", 12, 12.0" into "hello: 12, 12.00000".

out calls __fwritex which is in src/stdio/fwrite.c. In __fwritex there is a call to a function pointer:
f->write(f, s, i);. We do not describe function pointers in details here3, just know that this will lead at run-
time to a call to __stdout_write(f, s, i). That function is located in src/stdio/__stdout_write.c and calls
__stdio_write in src/stdio/__stdio_write.c, which itself calls syscall(SYS_writev, f->fd, iov, iovcnt).

syscall is a macro expansion, defined in src/internal/syscall.h. It calls syscall3 as follows:

__syscall_3(SYS_writev, f->fd, iov, iovcount);

This will lead to a call to the writev system call4 with parameters f->fd, iov, and iovcount. writev realises
several write operations at once in a file descriptor, each characterised by a memory address to write from, and the
amount of bytes to write: in other words it is equivalent to a series of calls to write on the same file descriptor. The
series of operation is described in an array of iovec data structures:

struct iovec {
void *iov_base; /* Starting address */
size_t iov_len; /* Number of bytes to transfer */

};
3For more information please see: https://en.wikipedia.org/wiki/Function_pointer#Example_in_C
4https://linux.die.net/man/2/writev

2

https://filippo.io/linux-syscall-table/
https://en.wikipedia.org/wiki/Function_pointer#Example_in_C
https://linux.die.net/man/2/writev

writev takes as parameter the file descriptor to write to, (in the call above, f->fd), the array of iovec structs
(iov), and its size (iovcount). At runtime f->fd will be 1, a special file descriptor representing the standard output.
Indeed, in UNIX-like operating systems such as Linux, everything is a file5, and printing to the console is realised by
writing to a (pseudo-) file representing the standard output.

syscall3 is a function defined in arch/x86_64/syscall_arch.h:

static __inline long __syscall3(long n, long a1, long a2, long a3) {
unsigned long ret;
__asm__ __volatile__ ("syscall" : // 5) the syscall instruction

"=a"(ret) : // 6) we'll get the return value in rax
"a"(n), // 1) syscall number in rax
"D"(a1), // 2) argument 1 in rdi
"S"(a2), // 3) argument 2 in rsi
"d"(a3) : // 4) argument 3 in rdx
"rcx", "r11", "memory");

return ret;
}

This function will be inlined by the compiler wherever it is called, as indicated by the __inline keyword, hence it is
fine to have its body implemented in the syscall_arch.h header file. We will not go into the details of how inline
assembly works here, but know that this generates the code adhering to the ABI previously described. In assembly
and in the proper order, instructions will look approximately like this:

mov $20, %rax
mov $1, %rdi
mov <address of the iovec array>, %rsi
mov $1, %rdx
syscall

The steps are:

1. The system call identifier of writev (n, i.e. SYS_writev, i.e. 20) is placed in %rax.
2. The 3 parameters (file descriptors, array of struct iovec, size of the array) are placed in %rdi, %rsi, and rdx.
3. The syscall instruction is invoked. At that point the kernel starts to run to process the system call. We will

discuss what happens there further in the next lecture.
4. When the kernel returns to the application from the system call execution, the return value of the system call

(an unsigned long) is present in %rax. In __syscall3 it is placed in the ret variable, and returned up the
call stack.

Hello World without Libc
Now that we know how to issue a system call to print on the console, an interesting exercise is to achieve that
without the libc, i.e. without printf. This can be done with the following program:

// nolibc.c

// Print "hello!" to the standard output without the C library, directly making a
// write syscall to stdout file desccriptor (by convention 1)
// Notice the abscense of '#include': we don't want to use the libc

/* Without libc the default entry point is _start */
void _start() {

unsigned long ret;

/* Write syscall */
__asm__ __volatile(

"syscall" : // the syscall instruction
"=a"(ret) : // we'll get the return value in rax

5https://en.wikipedia.org/wiki/Everything_is_a_file

3

https://en.wikipedia.org/wiki/Everything_is_a_file

"a"(1), // syscall number (1 for write)
"D"(1), // argument1: file descriptor (1 for stdout)
"S"((long)"hello!\n"), // argument2: char array to print
"d"(7) : // argument3: number of bytes to write
"rcx", "r11", "memory");

/* exit syscall to quit properly */
__asm__ __volatile("syscall" : : // syscall instruction

"a"(60), // exit's syscall number
"D"(0) : // exit parameter: 0
"rcx", "r11", "memory");

}

This program issues 2 system calls: one write to the standard output, followed by exit to terminate the program.
It can be compiled without the libc and executed as follows:

$ gcc -nostdlib nolibc.c -o nolibc
$./nolibc
hello!

4

	The C Standard Library
	Using Musl
	System Calls
	The System Call Application Binary Interface
	Musl’s Implementation of printf
	Hello World without Libc

