
Lecture 23: Memory Safety
COMP26020 Part 1 (C) Lecture Notes

Pierre Olivier

These notes summarise the important points mentioned in the lectures. They are supposed to be a help for revising
and not a way to avoid attending the live lectures and watching the videos. In other words, live lectures and videos
may include examinable content that is not present in these notes.

The slides for this lecture are available here:
https://olivierpierre.github.io/comp26020-lectures/23-memory-safety.

Videos and recordings of live sessions can be found on the video portal: https://video.manchester.ac.uk/lectures.

Here we discuss a problem that is inherent to C: the fact that the language is not memory-safe.

Memory Unsafety in C Programs
C is not memory-safe. This means that there is no protection against a range of bugs when dealing with memory
accesses. These bugs can relate to spatial safety: in C the programmer is free to read or write anywhere he/she
wants to in memory. Bugs in this category include out of bound array accesses and bad pointer dereference
(e.g. pointer being NULL or mistakes in pointer arithmetics). Other bugs relate to temporal safety: the compiler
cannot check things like accessing a dynamically-allocated buffer after it has been freed: this is a use-after-free.
These bugs lead to undefined behaviour: it can be a crash if the memory accessed is not mapped (remember the
virtual address space is overall scarce), or incoherent (and hard to debug) behaviour when the memory accessed is
mapped but does not contain what the programmer expects.

C is not memory safe for various reasons, including performance: adding runtime checks against these bugs is in
theory possible, but it hurts performance. There is no bound check on buffers and array accesses. Uninitialised
variables generally contain random garbage. Dynamic memory allocation can lead to a lot of mistakes that won’t
be caught by the compiler. Such as memory leaks, double free, use-after-free, and so on. All these issues are hard
to detect and to debug. They can also be hard to reproduce: sometimes the bug only manifest after a long time,
several executions, or on a particular platform.

An important thing to note is that, in addition to crashes, which in some sense are a good outcome because they
indicate something needs to be fixed, these memory issues can have dramatic implication in terms of security. Here
we will study 4 example of memory bugs that lead to security issues.

Example 1: Infoleak
The first example regards the leak of confidential information. Consider this program:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

char *welcome_message = "Hi there! How is it going?\n"; // 27 char
char *password = "secret";
char entered_password[128];

int main(int argc, char **argv) {
// Print welcome message character by character

1

https://olivierpierre.github.io/comp26020-lectures/23-memory-safety
https://video.manchester.ac.uk/lectures

for(int i=0; i<27; i++) {
printf("%c", welcome_message[i]);

}

printf("Please input the password:\n");
scanf("%s", entered_password);

if(!strcmp(entered_password, password)) {
printf("Passowrd ok!\n");

/* ... */
} else {

printf("Wrong password! aborting\n");
}

return 0;
}

The program checks a platform entered by the user using scanf. It starts by printing a welcome message character
by character. Then asks for a password from the user and compares the input to the correct password. If the
password is correct, the program then goes on to do something important. The program is distributed in binary-only
form, so unauthorised users do not have access to the sources and cannot see the password.

Let’s assume that during an update, the welcome message is updated as follows:

char *welcome_message = "Hi there!\n"; // shortened welcome message, only 11 chars now

Let’s assume that the programmer forgets to update the number of iteration of the for loop printing that message.
The message being now much smaller, the printing loop will overflow the welcome_message string and print whatever
bytes are present next in memory. It may just be garbage . . . or not: due to how the compiler lays out variables in
memory, there are actually good chances that the password is very close to the welcome message in memory. The
password is in fact located right after it. So the printing loop overflows the welcome message and reads bytes from
password. And the password is leaked to the standard output. Running the faulty program gives:

$./infoleak-updated
Hi there!
secretPlease inPlease input the password:

Example 2: Sensitive Data Tampering
Let’s see a second example in which we tamper with a password to bypass it. Consider this program:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

char user_input[32] = "00000000000";
char password[32] = "secret";

int main(int argc, char **argv) {

if(argc != 2) {
printf("Usage: %s <password>\n", argv[0]);
return 0;

}

strcpy(user_input, argv[1]); // oopsie!

if(!strncmp(password, user_input, strlen(password))) {
printf("login success!\n");

} else {

2

printf("wrong password!\n");
}

/* ... */
return 0;

}

It takes the password as command line parameter. The password is copied in a buffer user_input. The content of
that buffer is compared with the correct password, and if they match the program continues. The issue is that there
are no checks done by strcpy regarding the sizes of the source and destination strings.

In memory, it is very likely that the compiler will place the correct password right after the user_input buffer. If
the user passes a string as command line parameter which size is larger than the 32 bytes of that buffer, strcpy will
overflow user_input and start overwriting the password. The user hence has the capacity to rewrite the correct
password with the value of his/her choice. That value should be the same as the first 25 bytes that will go into
user_input, so that when strcmp is called the strings will match:

$./tampering xx
login success!

Example 3: Stack Smashing
Stack smashing is an old attack where a buffer overflow can be exploited on the stack to take over the control flow of
an application. It was originally presented in 19961. Before going over the attack with an example, we first have to
understand how the machine uses the stack to manage function call and return operations.

Functions from the Machine Code Point of View

The stack is a dynamic data structure in memory. It holds, amongst other things, local variables as well as function
parameters and return values. The space on the stack dedicated to a function’s data (local variables, etc.) is
contiguous in memory, it is called the function’s stack frame. When a function is called, the stack’s size is increased
to create the corresponding frame. In addition to the function’s data, its frame also contains the return address.
This is the address in the program’s code (that is present somewhere else in memory) to which the CPU will jump
once the function returns. The central idea of stack smashing is to overwrite the return address of a function f with
the address of code the attacker wishes to execute (e.g. the successful branch of a password check): when f returns,
rather than returning to f’s caller, the program jumps to the target code.

Target Program

Consider this program:

char *password = "super-secret-password";
void security_critical_function() {

printf("launching nukes!!\n");
}
void preprocess_input(char *string) {

char local_buffer[16];
strcpy(local_buffer, string);
/* work on local buffer ... */

}
int main(int argc, char **argv) {

if (argc != 2) { /* ... */ }
preprocess_input(argv[1]);
if(!strncmp(password, argv[1],

strlen(password)))
security_critical_function();

else
printf("Unauthorised user!\n");

1http://www.phrack.org/archives/issues/49/14.txt

3

http://www.phrack.org/archives/issues/49/14.txt

return 0;
}

This program takes a password as command line parameter. The input is passed through a function that preprocess
it after having it copied in a local buffer with strcpy. And if the password is correct we execute a security critical
function. There is a bug in this program: strcpy check for the size of string prior to copying it in local_buffer,
letting the attacker overflow that buffer if data passed on the command line is larger than 16 bytes. local_buffer
is a local variable, hence it is allocated on the stack. Similarly to the other examples, assume an attacker that only
has access to the program’s binary, and that does not know the password.

The Attack

With stack smashing we will use this overflow to overwrite the return address of preprocess_input with the address
of security_critical_function in order to bypass the password check. This is possible because on x86-64 the
stack grows down, from higher to lower addresses. The return address is located after local_buffer on the stack,
so overflowing it with strcpy allows overwriting the return address with whatever the attacker inputs from the
command line. The process is illustrated on this schema:

+----------------------+
| | |High addresses
| | main's stack frame |
| | |
| +----------------------+ ^
| | preprocess_input's | |
| | return address | |
| +----------------------+ |Overflow

Stack| | | |with
growth| +----------------------+ |strcpy

direction| | | |
| | local_buffer | |
| | | |
| +----------------------+ |
| | |
| | |
| | |Low addresses
v +----------------------+

The schema represents the state of the stack at the time preprocess_input runs and strcpy is called. We
have the calling context (main) local variables first. Then the return address that was pushed when we called
preprocess_input. And then preprocess_input’s frame with its local variables including local_buffer. Re-
member that because the stack grows down, lower addresses are on the bottom of this graph, so when we overflow
local_buffer we are effectively writing up the top of the stack towards the return address By using a carefully
crafted input string, we can overwrite the return address with the address of a function we would like to execute. For
example the address of security_critical_function. And when the execution returns from preprocess_input,
the CPU will jump to security_critical_function rather than returning to main: the password check is bypassed.

See the complete program’s sources2 for instructions on how to reproduce this attack. On the computer this code
was tested, the payload (injected with echo -e and xargs to produce bytes and not ascii characters) looks like this:

$ echo -e "\x11\x11\x11\... (24 bytes of \x11 padding) ... \x55\x16\x40\x00\x00\x00\x00\x00" \
| xargs --null -t -n1 ./stack-smashing

./stack-smashing ''$'\021\021\021\021\021\021\021\021\021\021\021\021\021\021\021\021\021\021
\021\021\021\021\021\021''U'$'\026''@'

launching nukes!!
xargs: ./stack-smashing: terminated by signal 11

2https://github.com/olivierpierre/comp26020-devcontainer/blob/master/23-memory-safety/stack-smashing.c

4

https://github.com/olivierpierre/comp26020-devcontainer/blob/master/23-memory-safety/stack-smashing.c

Example 4: Use-After-Free
A use-after-free happens when the programmer mistakenly uses an object after it has been freed. Consider this
program:

typedef struct {
double member1;
double member2;
void (*member3)(int);

} my_struct;

void print_hello(int x) {
printf("Hello, parameter: %d\n", x);

}

void security_critical_function() {
printf("Launching nukes!\n");
/* ... */

}

int main(int argc, char **argv) {

/* allocate and init ms */
my_struct *ms = malloc(sizeof(my_struct));
ms->member1 = 42.0; ms->member2 = 42.0;
ms->member3 = &print_hello;

/* call the function pointer */
ms->member3(12);

free(ms);

char *buffer = malloc(12);
strcpy(buffer, argv[1]);

ms->member3(12); // Oopsie!
exit(0);

}

Here ms is allocated with malloc, then freed, then mistakenly used right before the call to exit(0). This issue is not
caught by the compiler, and in many scenarios will not manifest either at runtime.

If we look at the data structure declaration, it has an int member and a second member that is a function pointer.
A function pointer is a variable that can store the address of a function, see how it is assigned in main: ms->member3
= &print_hello;. We put the address of the print_hello function in the member. And this function can be called
through the function pointer, as it also done later: ms->member3(12);. Between the moment what is pointed by ms
is freed and the use-after-free, a buffer pointed by buffer is allocated with malloc and a command line parameter
is copied in that buffer with strcpy. Note the lack of check on the size of the command line argument: once again
the attacker can overflow the memory pointed by buffer.

Let’s see how we can exploit use this program to force the execution of security_critical_function, that is not
supposed to be called in this particular program. The central idea behind many attacks leveraging a use-after-free
vulnerability is to replace the data structure being used after free with a payload that will corrupt the behaviour of
the program once the use-after-free happens. buffer, as well as what is pointed by ms, are allocated on the heap.
malloc manages allocations on the heap, and to avoid memory waste malloc will reuse freed memory to serve new
allocation requests: in other words, it is very likely that the memory used to hold what was pointed was ms will be
reused for buffer. Recall that through the buffer overflow, the attacker has control over the content of buffer.
The attacker is going to write inside buffer the address of security_critical_function, at the precise location
where, if interpreted as an ms data structure, the function pointer would be located. Once the function pointer is

5

dereferenced, the CPU will in effect jump to security_critical_function. Please see the full source code3 for
instruction on how to reproduce that attack.

On the computer this code was tested, the payload looks like that:

echo -e "\x11\x11\x11\ ... (16 bytes of \x11 padding) ... \x7c\x16\x40\x00\x00\x00\x00\x00" \
| xargs --null -t -n1 ./use-after-free

./use-after-free ''$'\021\021\021\021\021\021\021\021\021\021\021\021\021\021\021
\021''|'$'\026''@'

Hello, parameter: 12
Launching nukes!
program continue to misbehave after that

Conclusion
C is not memory safe. The memory safety bugs introduced by programming mistakes lead not only crashes, but
more importantly to security vulnerabilities that can have very serious consequences.

3https://github.com/olivierpierre/comp26020-devcontainer/blob/master/23-memory-safety/use-after-free.c

6

https://github.com/olivierpierre/comp26020-devcontainer/blob/master/23-memory-safety/use-after-free.c

	Memory Unsafety in C Programs
	Example 1: Infoleak
	Example 2: Sensitive Data Tampering
	Example 3: Stack Smashing
	Functions from the Machine Code Point of View
	Target Program
	The Attack

	Example 4: Use-After-Free
	Conclusion

