(OMP26020 Programming Languages and Paradigms -- Part 1

The Main Programming Paradigms

1/28

Main Programming Paradigms and Sub-Paradigms

e Imperative

o Structured (or procedural)
o Object Oriented
o Concurrent

e Declarative:

o Functional
o Concurrent

Note that there are many other paradigms!

2/28

Imperative Programming Paradigm

* Programmer describes sequences of statements manipulating the
program state

o |.e.describes how to obtain the computation results
o Basically a cooking recipe

3/28

Imperative Programming Paradigm

Example: Intel x86-64 assembly

quit:

_start:

message:

.global _start

.text

exit(0)

mov $60, %rax
xor %rdi, %rdi
syscall

write(1, message, 14)

mov $1, %rax

mov $1, %rdi

mov Smessage, %rsi
mov $14, %rdx
syscall

jmp quit

.ascii "Hello, world!\n"

H R R

HHHHHH

system call 60 is exit
we want return code 0
invoke operating system to exit

system call 1 is write

file handle 1 is stdout

address of string to output

number of bytes

invoke operating system to do the write
jump to the quit label above

02-main-programming-paradigms/imperative-asm.S (@)

4/28

https://olivierpierre.github.io/comp26020-lectures/02-main-programming-paradigms/src/imperative-asm.S
https://github.com/olivierpierre/comp26020-devcontainer

5/28

d

é\ stack overflow Products Customers Use cases

Home Unravelling Assembly Language Spaghetti Code

PUBLIC Asked 10 years, 11 months ago Active 6 years, 10 months ago Viewed 2k times

@ Stack Overflow |
Tags I've inherited a 1DK—.Iine program written m 8051 assembly_ language that requires some changes.

Unfortunately it's written in the finest traditions of spaghetti code. The program--written as a single
Users 17 file--is a maze of CALL and LIMP statements (about 1200 total), with subroutines having multiple
entry and/or exit points, if they can be identified as subroutines at all. All variables are global. There
Jobs are comments; some are correct. There are no existing tests, and no budget for refactoring.

6/28

E\\ stack overflow Products Customers Use cases

Home Unravelling Assembly Language Spaghetti Code

PUBLIC Asked 10 years, 11 months ago Active € years, 10 months ago Viewed 2K times

&) stack Overflow |
_— I've inherited a 10K-line program written in 8051 assembly language that requires some changes.

d Unfortunately it's written in the finest traditions of spaghetti code. The program--written as a single
Users 17 file--is a maze of CALL and LIMP statements (about 1200 total), with subroutines having multiple
entry and/or exit points, if they can be identified as subroutines at all. All variables are global. There

Jobs

are comments; some are correct. There are no existing tests, and no budget for refactoring.

_ T — T T -L‘- L T -

Get a pre-paid psychiatrist on standby. Then go on a Beautiful-Mind wall-writing spree to map its control flow.
Once you're insane, quit your job and devote your life to hunting the original coder like a dog. — geofftnz Jun
11 '09 at 21:25

i - al . P

6/28

N
é‘ stack overflow Products Customers Use cases

Home Unravelling Assembly Language Spaghetti Code

PUBLIC Asked 10 years, 11 months ago Active 6 years, 10 months ago Viewed 2k times

@ Stack Overflow |

I've inherited a 10K-line program written in 8051 assembly language that requires some changes.
Unfortunately it's written in the finest traditions of spaghetti code. The program--written as a single
Users 17 file--is a maze of CALL and LIMP statements (about 1200 total), with subroutines having multiple
entry and/or exit points, if they can be identified as subroutines at all. All variables are global. There
are comments; some are correct. There are no existing tests, and no budget for refactoring.

Tags

Jobs

_ T — — y — -.l.-‘ L T -

7 Get a pre-paid psychiatrist on standby. Then go on a Beautiful-Mind wall-writing spree to map its control flow.

Once you're insane, quit your job and devote your life to hunting the original coder like a dog. — geofftnz Jun
11'09 at 21:25

Other examples of unstructured imperative languages: early versions
of FORTRAN, COBOL, BASIC

6/28

Imperative Structured Programming Paradigm

e The programmer uses advanced control flow operations
o Loops, conditionals, procedures
o Compared to pure imperative, easier to describe/reason about
complex/large programs

; —

staternent — —
statement I »,_condition 4 @ condition
Y y

statement statement
| statement statement staterment

staterment T ¥
statement . .

¥

slalernent | statamant

statement
| Se—

7/28

Imperative Structured Programming Paradigm

Example: C

/* Check if a number is prime */
int is_prime_number(int number) {
if(number < 2)
return 0O;

for(int j=2; j<number; j++)
if(number % j == 0)

return 0O;
return 1;
}
int main(void) { /* Check which of the first 10 natural integers are prime */
int i;
int total iterations = 10;
for(i=0; i<total_iterations; i++)
if(is_prime_number(i))
printf("%d is a prime number\n", 1i);
else
printf("%d is not a prime number\n", i);
return O;
}

02-main-programming-paradigms/imperative-structured.c () 8 / 2 8

https://olivierpierre.github.io/comp26020-lectures/02-main-programming-paradigms/src/imperative-structured.c
https://github.com/olivierpierre/comp26020-devcontainer

Imperative Structured Programming Paradigm

Algol [JHeN \\éé
Ada=

@ FORTRAN
9/28

Imperative Object-Oriented Programming Paradigm

e Encapsulation of code and the associated data into objects

Non-OO (procedural): OO0:

operation(data) data.operation()

Shape

- id

+ printMe()

1

Square Circle

+ printMe() “ printMe()

10/ 28

Imperative Object-Oriented Programming

// Example in C#

abstract class Shape {
public abstract void printMe();
[* ... */

}

class Square : Shape {
override void printMe() {Console.WriteLine ("Square id: {0}, side: {1}", _id, _side);}
[* ... %/

}

class Cicle : Shape {
override void printMe() {Console.WriteLine ("Circle id: {0}, radius: {1}", _id, _radius);}

}

public class MainClass {
public static void Main(string[] args) {
Square mySquare = new Square(42, 10);
Circle myCircle = new Circle(242, 12);
mySquare.printMe();
myCircle.printMe();

} 02-main-programming-paradigms/imperative-oo.cs (@)

11/28

https://olivierpierre.github.io/comp26020-lectures/02-main-programming-paradigms/src/imperative-oo.cs
https://github.com/olivierpierre/comp26020-devcontainer

Imperative Object-Oriented Programming

// Example in C++
class Shape {

public:
virtual void printMe(void) = 0;
[* ... */

s

class Square : Shape {

public:
void printMe(void) { cout << "Square id: " << _1d << ", side: " << _side << endl; }
15 oo &Y

class Circle : Shape {

public:
void printMe(void) { cout << "Circle id: " << _1d << ", radius: " << _radius << endl; }
[* ... */

13

int main(void) {
Square mySquare Square(42, 10);
Circle myCircle = Circle(242, 12);
mySquare.printMe();
myCircle.printMe();

} 02-main-programming-paradigms/imperative-oo. ch_O

12/28

https://olivierpierre.github.io/comp26020-lectures/02-main-programming-paradigms/src/imperative-oo.cpp
https://github.com/olivierpierre/comp26020-devcontainer

Imperative Object-Oriented Programming Paradigm

e ®Java python

e Well suited to represent problems with a lot of state/operations
o GUI, simulators, video games, business management software,
and many other use cases
e Easereasoning about/organising large codebases
e Cansometimes be overkill for small programs

13/28

Imperative Concurrent Programming Paradigm

e The programmer uses execution threads/processes to describe
interleaving and/or parallel computation flows

Example in C with POSIX threads:

static void *thread_function(void *argument) {
int id = *(int *)argument;

for(int 1=0; 1<10; i++)
printf("Thread %d running on core %d\n", id, sched getcpu());
}

int main(void) {
pthread_t threads[NUMBER_OF THREADS];
int thread_ids[NUMBER_OF THREADS];

for(int 1=0; i<NUMBER_OF THREADS; i++) {

thread_ids[i] = 1;

pthread create(&threads[i], , &thread function, &thread_ids[i]);
}

[* ..o %/

02-main-programming-paradigms/pthread.c ()

14 /28

https://olivierpierre.github.io/comp26020-lectures/02-main-programming-paradigms/src/pthread.c
https://github.com/olivierpierre/comp26020-devcontainer

Imperative Concurrent Programming Paradigm

Execution example with 4 threads and 2 parallel processing units
(cores):

Time >

Core 1 thread1 thread2 thread1 thread2

Core 2 thread3 thread4 thread3 thread4

e Many imperative languages provide ways to exploit concurrency:
o Shared-memory threads/processes in C/C++, Java, Python, etc.
o Message passing (for example MPI) in C/C++/FORTRAN
o Semi-automatic loop paralelization with libraries such as
OpenMP
o GPU programming with CUDA

O (XX}

e Use cases: HPC, distributed computing, graphic processing, etc. 15/28

Declarative Programming Paradigm

The programmer describes the meaning/result of computations

<html>
<body>

<h1> Hello, world! </h1>
<p>
Lorem ipsum dolor sit amet, consectetur adipiscing elit. Vestibulum
sed leo sit amet urna accumsan aliquam. Fusce et aliquet nibh.
</p>
</body>
</html>

See the result here. These slides are also created with a combination of
2 declarative languages: HTML and Markdown -- try typing ctrl+U :)

16/ 28

https://olivierpierre.github.io/comp26020-lectures/02-main-programming-paradigms/src/listing7.html

Declarative Programming Paradigm

e High level of abstraction

e Code can easily become convoluted

e Languages: HTML, SQL, XML, CSS, Latex (non-Turing complete)

e Usage: document rendering, structured data storage and
manipulation

17/28

Declarative Functional Programming Paradigm

e Calling and composing functions to describes the program

Example in Haskell:

add_10 x = x + 10
twice f = f . f

main = do
print $ twice (add_10) 7

02-main-programming-paradigms/functional.hs ()

18/28

https://olivierpierre.github.io/comp26020-lectures/02-main-programming-paradigms/src/functional.hs
https://github.com/olivierpierre/comp26020-devcontainer

Declarative Functional Programming Paradigm

(* Example in OCaml *)
let width, height = 800, 600
let pi = 4. *. atan 1.;;

let endpoint x y angle length =
x +. length *. cos angle,
y +. length *. sin angle;;

let drawLine x y angle length width =
let x_end, y_end = endpoint x y angle length in
set_line _width (truncate width);
moveto (truncate x) (truncate y);
lineto (truncate x_end) (truncate y end);;

let rec drawRec x y angle length width =
if length > 0. then
let endx, endy = endpoint x y angle length in
drawLine x y angle length width;
drawRec endx endy (angle +. pi *. 0.133) (length -. 4.) (width *. 0.75);
drawRec endx endy (angle +. pi *. -0.166) (length -. 4.) (width *. 0.75);;

moveto 400 200;;
drawRec 4600. 200. (pl *. 0.5) 50.0 4.;; 02-ma'1n-mqramming;Daradiqms/functional.mlO

Source: https://github.com/DaQuirm/ocaml-fractals

19/28

https://olivierpierre.github.io/comp26020-lectures/02-main-programming-paradigms/src/functional.ml
https://github.com/olivierpierre/comp26020-devcontainer
https://github.com/DaQuirm/ocaml-fractals

Declarative Functional Programming Paradigm

First-class/higher-order functions
Loops implemented with recursion
Pure functions have no side-effects
Languages: Haskell, Scala, F#, etc.

20/28

Declarative Concurrent Programming Paradigm

% Example in Erlang using the actor model

server() ->
receive
{From, {convert, TempC}} -> From ! {converted, 32 + TempC *9/5},
server();
{stop} -> io:format("Stopping~n");
Other -> io:format("Unknown: ~p~n", [Other]),
server()
end.

client(ClientID, ServerPID) ->
TempC = rand:uniform(40),
ServerPID ! {self(), {convert, TempC}},
receive
{converted, TempF} -> io:fwrite("~p: ~p deg. C i{s ~p deg. F~n.",
[ClientID, TempC, TempF]),
timer:sleep(100),
client(ServerPID);
{stop} -> io:format("Stopping~n");
Other -> io:format("Unknown: ~p~n", [Other])
end.

start() ->
Pid1 = spawn(temperature, server, []),
spawn(temperature, client, [0, Pid1]),

spawn(temperature, client, [1, Pid1]), 02-main-programming-paradigms/declarative-concurrent.erl© 21 / 28

https://olivierpierre.github.io/comp26020-lectures/02-main-programming-paradigms/src/declarative-concurrent.erl
https://github.com/olivierpierre/comp26020-devcontainer

Declarative Concurrent Programming Paradigm
dog. O to F /

e Less need for synchronisation
e Use cases: distributed applications, web services, etc.

22 /28

There are Many Other Programming Paradigms

e Logic, Dataflow, Metaprogramming/Reflexive, Constraint, Aspect-
oriented, Quantum, etc.

https://en.wikipedia.org/wiki/Template:Programming_paradigms

23/28

https://en.wikipedia.org/wiki/Template:Programming_paradigms

Multi-Paradigm Languages

e Haskell: purely functional and does not allow OO style
e OCaml: mainly functional, allows OO and imperative constructs
e C,C++:imperative but allow some functional idioms:

int fact(int x) {

if(x == 0) return 1;
return x * fact(x-1);

}

e So many languages are multi-paradigm

24 /28

It all Boils down to Machine Code

(text)
Machine code
C++ > Toolchain =
sources (compiler, etc.) |
(text) -
Fortran > Toolchain > | |
sources (compiler, etc.)

25/28

Summary

Declarative
languages

M

+ first-class/higher-""
order functions

Functional

Inspired from

https://www.info.ucl.ac.be/~pvr/VanRoyChapter.pdf

Imperative
languages

+ procedures,

control flow structure

Procedural/
structured

l+ thread

l

v

+ 5I5iect

Concurrent

Object-Oriented

26 /28

Course Overview

Inspired from
https://www.info.ucl.ac.be/~pvr/VanRoyChapter.pdf

Declarative Imperative
languages languages

Part 2

-

Procedural/
structured

Functional

lPartl

Concurrent Object-Oriented

5 + advanced topics 5

27 /28

Feedback Form

https://bit.ly/3lJIvVW(q

28 /28

https://bit.ly/3lJIvWq

