
COMP26020 Programming Languages and Paradigms -- Part 1

Introduction to Pointers

1 / 14

Program Memory Layout
All the program's code and data is present somewhere in memory
The area of memory accessible by the program is the address space

It's a large array of contiguous bytes
Addresses are indexes in that array

Program memory

Address: 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF 0x10 0x11

...

0x7FFFFFFFFFFF

(128 TB)
1 byte

2 / 14

Program Memory Layout
All the program's code and data is present somewhere in memory
The area of memory accessible by the program is the address space

It's a large array of contiguous bytes
Addresses are indexes in that array

Program memory

Address: 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF 0x10 0x11

...

0x7FFFFFFFFFFF

(128 TB)
1 byte

Note that this is virtual memory:
Address space size independent from the amount of RAM
Each program gets its own address space

2 / 14

Program Memory Layout
Address of a variable: the address in memory of the first byte
storing that variable

3 / 14

Program Memory Layout
Address of a variable: the address in memory of the first byte
storing that variable

int glob = 12;
char string[] = "abcd";

typedef struct {
 int member1;
 float member2;
} mystruct;

int main(int argc, char **argv) {
 mystruct ms;
 ms.member1 = 42;
 ms.member2 = 4.2;
 printf("ms member1: %d, member2: %f\n", ms.member1, ms.member2);
 return 0;
}

3 / 14

Program Memory Layout
Address of a variable: the address in memory of the first byte
storing that variable

int glob = 12; // glob's address is 0x3300
char string[] = "abcd"; // string's address is 0x2f0

typedef struct {
 int member1;
 float member2;
} mystruct;

int main(int argc, char **argv) {
 mystruct ms; // ms' address is 0x123
 ms.member1 = 42;
 ms.member2 = 4.2;
 printf("ms member1: %d, member2: %f\n", ms.member1, ms.member2);
 return 0;
}

Program memory

Address:

ms

(8 bytes)
string

(5 bytes)
glob

(4 bytes)

0x123 0x2f0 0x3300 4 / 14

09-pointers-introduction/ampersand.c

Addresses
Use the & operator to get the address of a variable

int glob = 12;

typedef struct {
 int member1;
 float member2;
} mystruct;

int main(int argc, char **argv) {
 mystruct ms = {1, 2.0};

 // With modern processors an address is a 64 bits value so we need the right format
 // specifier: "%p", which will print the address in hexadecimal prefixed by "0x",
 // for example "0x12345"
 printf("ms address is: %p, glob address is %p\n", &ms, &glob);
 return 0;
}

5 / 14

https://olivierpierre.github.io/comp26020-lectures/09-pointers-introduction/src/ampersand.c
https://github.com/olivierpierre/comp26020-devcontainer

Pointers
Pointer: variable that contains an address (possibly of another variable)

6 / 14

Pointers
Pointer: variable that contains an address (possibly of another variable)

Declaration: <pointed type> *<pointer name>;

int v = 42;
int *ptr = &v;

6 / 14

Pointers
Pointer: variable that contains an address (possibly of another variable)

Declaration: <pointed type> *<pointer name>;

int v = 42;
int *ptr = &v;

Program memory

Address:

42

0xF120

v

(int)

6 / 14

Pointers
Pointer: variable that contains an address (possibly of another variable)

Declaration: <pointed type> *<pointer name>;

int v = 42;
int *ptr = &v;

Program memory

Address:

0xF120 42

0xF120

ptr
(int *)

v
(int)

7 / 14

Pointers
Pointer: variable that contains an address (possibly of another variable)

Declaration: <pointed type> *<pointer name>;

int v = 42;
int *ptr = &v;

Program memory

Address:

0xF120 42

0xF120

ptr
(int *)

v
(int)

64 bits

8 / 14

Pointers
Pointer: variable that contains an address (possibly of another variable)

Declaration: <pointed type> *<pointer name>;

int v = 42;
int *ptr = &v;

Program memory

Address:

0xF120 42

0xF120

ptr
(int *)

v
(int)

64 bits

Dereferencing, i.e. accessing the pointed value, done with *

printf("pointer value: %p\n", ptr); // 0xF123
printf("pointed value: %d\n", *ptr); // 42 8 / 14

09-pointers-introduction/pointer.c

Pointers
int glob = 12;
double glob2 = 4.4;

typedef struct { int member1; double member2; } mystruct;

int main(int argc, char **argv) {
 mystruct ms = {55, 2.23};

 int *ptr1 = &glob;
 double *ptr2 = &glob2;
 mystruct *ptr3 = &ms;

 /* Print each pointer's value (i.e pointed address), and pointed value */
 printf("ptr1 = %p, *ptr1 = %d\n", ptr1, *ptr1);
 printf("ptr2 = %p, *ptr2 = %f\n", ptr2, *ptr2);
 printf("ptr3 = %p, *(ptr3).member1 = %d, *(ptr3).member2 = %d\n",
 ptr3, *(ptr3).member1, *(ptr3).member2);
}

9 / 14

https://olivierpierre.github.io/comp26020-lectures/09-pointers-introduction/src/pointer.c
https://github.com/olivierpierre/comp26020-devcontainer

09-pointers-introduction/pointer.c

Pointers
int glob = 12;
double glob2 = 4.4;

typedef struct { int member1; double member2; } mystruct;

int main(int argc, char **argv) {
 mystruct ms = {55, 2.23};

 int *ptr1 = &glob;
 double *ptr2 = &glob2;
 mystruct *ptr3 = &ms;

 /* Print each pointer's value (i.e pointed address), and pointed value */
 printf("ptr1 = %p, *ptr1 = %d\n", ptr1, *ptr1);
 printf("ptr2 = %p, *ptr2 = %f\n", ptr2, *ptr2);
 printf("ptr3 = %p, *(ptr3).member1 = %d, *(ptr3).member2 = %d\n",
 ptr3, *(ptr3).member1, *(ptr3).member2);
}

12

glob glob2

2.2355

ms

4.4

10 / 14

https://olivierpierre.github.io/comp26020-lectures/09-pointers-introduction/src/pointer.c
https://github.com/olivierpierre/comp26020-devcontainer

09-pointers-introduction/pointer.c

Pointers
int glob = 12;
double glob2 = 4.4;

typedef struct { int member1; double member2; } mystruct;

int main(int argc, char **argv) {
 mystruct ms = {55, 2.23};

 int *ptr1 = &glob;
 double *ptr2 = &glob2;
 mystruct *ptr3 = &ms;

 /* Print each pointer's value (i.e pointed address), and pointed value */
 printf("ptr1 = %p, *ptr1 = %d\n", ptr1, *ptr1);
 printf("ptr2 = %p, *ptr2 = %f\n", ptr2, *ptr2);
 printf("ptr3 = %p, *(ptr3).member1 = %d, *(ptr3).member2 = %d\n",
 ptr3, *(ptr3).member1, *(ptr3).member2);
}

ptr1 ptr2 ptr3

12

glob glob2

2.2355

ms

4.4

11 / 14

https://olivierpierre.github.io/comp26020-lectures/09-pointers-introduction/src/pointer.c
https://github.com/olivierpierre/comp26020-devcontainer

09-pointers-introduction/pointer.c

Pointers
int glob = 12;
double glob2 = 4.4;

typedef struct { int member1; double member2; } mystruct;

int main(int argc, char **argv) {
 mystruct ms = {55, 2.23};

 int *ptr1 = &glob;
 double *ptr2 = &glob2;
 mystruct *ptr3 = &ms;

 /* Print each pointer's value (i.e pointed address), and pointed value */
 printf("ptr1 = %p, *ptr1 = %d\n", ptr1, *ptr1);
 printf("ptr2 = %p, *ptr2 = %f\n", ptr2, *ptr2);
 printf("ptr3 = %p, *(ptr3).member1 = %d, *(ptr3).member2 = %d\n",
 ptr3, *(ptr3).member1, *(ptr3).member2);
}

Address:

12

glob glob2

2.2355

ms

0x55a15aa3c030
0x55a15aa3c038

0x7ffd68413160

4.4

ptr1 ptr2 ptr3

12 / 14

https://olivierpierre.github.io/comp26020-lectures/09-pointers-introduction/src/pointer.c
https://github.com/olivierpierre/comp26020-devcontainer

09-pointers-introduction/pointer.c

Pointers
int glob = 12;
double glob2 = 4.4;

typedef struct { int member1; double member2; } mystruct;

int main(int argc, char **argv) {
 mystruct ms = {55, 2.23};

 int *ptr1 = &glob;
 double *ptr2 = &glob2;
 mystruct *ptr3 = &ms;

 /* Print each pointer's value (i.e pointed address), and pointed value */
 printf("ptr1 = %p, *ptr1 = %d\n", ptr1, *ptr1);
 printf("ptr2 = %p, *ptr2 = %f\n", ptr2, *ptr2);
 printf("ptr3 = %p, *(ptr3).member1 = %d, *(ptr3).member2 = %d\n",
 ptr3, *(ptr3).member1, *(ptr3).member2);
}

Address:

0x55a15aa3c030 0x55a15aa3c038 0x7ffd68413160 12

glob glob2

2.2355

ms

0x55a15aa3c030
0x55a15aa3c038

0x7ffd68413160

4.4

ptr1 ptr2 ptr3

13 / 14

https://olivierpierre.github.io/comp26020-lectures/09-pointers-introduction/src/pointer.c
https://github.com/olivierpierre/comp26020-devcontainer

Summary
A pointer: variable that stores an address corresponding to a
memory location
Can access that location through the pointer

Feedback form: https://bit.ly/3fKzIzr

14 / 14

https://bit.ly/3fKzIzr

