
COMP26020 Programming Languages and Paradigms -- Part 1

Case Study: High Performance Computing

1 / 6

C/C++ in HPC
C/C++ are extensively used in High Performance Computing (HPC)

because of their speed

Hardware

LibC

Python Interpreter

C program

Python script

OS

Due to many reasons, including the fact that they gives the
programmer control over the data memory layout

2 / 6

Controlling Memory Layout

Register

Register

Register

CPU Core
Cache

Load/Store
8 bytes

Main Memory

Very few registers,
very fast access

ALU

Small size
fast access

Large size
slow

access

Transfers
cache lines
(generally)
64 bytes

For performance reasons it is very important to fit as much of the
data set as possible in the cache

3 / 6

20-hpc-case-study/original.c

typedef struct {
 char c[60];
 int i;
 double d;
} my_struct;

#define N 100000000
my_struct array[N];

int main(int argc, char **argv) {
 struct timeval start, stop, res;
 my_struct s;

 gettimeofday(&start, NULL);

 /* Randomly access N elements */
 for(int i=0; i<N; i++)
 memcpy(&s, &array[rand()%N],
 sizeof(my_struct));

 gettimeofday(&stop, NULL);
 timersub(&stop, &start, &res);
 printf("%ld.%06ld\n", res.tv_sec,
 res.tv_usec);

 return 0; }

Struct size: 60 + 4 (int) + 8
(double) = 72 bytes

Larger and not a multiple of
the cache line size (64 bytes)
Most objects in the array will
require to fetch 2 cache lines
from main memory

RAM

1
cache
line

struct struct struct struct

Controlling Memory Layout

4 / 6

https://olivierpierre.github.io/comp26020-lectures/20-hpc-case-study/src/original.c
https://github.com/olivierpierre/comp26020-devcontainer

20-hpc-case-study/optimized.c

Unaligned Aligned
0

0.5

1

1.5

2

2.5

Ex
ec

. t
im

e
(s

)

About 25% faster!
How much is it on your
computer? check out your
CPU's cache line size with cat
/sys/devices/system/cpu/cpu0/
cache/index0/coherency_line_size

Controlling Memory Layout
typedef struct {
 char c[52]; // down from 60, we have 52 + 4 + 8 == 64 bytes i.e. a cache line
 int i;
 double d;
} my_struct;

my_struct array[N] __attribute__ ((aligned(64))); /* force alignment of the array itself */

/* ... */

5 / 6

https://olivierpierre.github.io/comp26020-lectures/20-hpc-case-study/src/optimized.c
https://github.com/olivierpierre/comp26020-devcontainer

Summary
C/C++ extensively used in HPC because of their speed

Run close to the hardware
No additional software layers
No runtime overhead
Integrates well with assembly
Control of the memory layout

Feedback form: https://bit.ly/3yz2jzh

6 / 6

https://bit.ly/3yz2jzh

