
COMP26020 Programming Languages and Paradigms -- Part 1

C and Memory Safety: Good Practices

1 / 12



The Problem
C and C++ have many benefits and are still the default languages in
several application domains
C/C++ are also inherently memory unsafe

How can we try to avoid as much as possible these dangerous memory
errors?

1. Some tools can help (won't fix everything!)
2. Write good code

2 / 12



Tools
Enable extra warnings with compiler flags:

-Wall
-Wextra
-pedantic

More info: https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html

3 / 12

https://gcc.gnu.org/onlinedocs/gcc/Warning-Options.html


Tools
Dynamic Analysis:

Valgrind
Address Sanitizer (ASAN):

Add these compiler flags: -fsanitize=address -fno-omit-
frame-pointer

BoundCheck, Purify, etc.
Static Analysis:

Clang Static Analyser
Lint, Coverity, cppcheck, etc.

4 / 12

https://valgrind.org/
https://github.com/google/sanitizers
https://clang-analyzer.llvm.org/


Writing Good Code
The compiler won't catch all mistakes
The tools have their limitations
Writing good code from the start is super important

It will save you a lot of debugging time
It will save you from introducing serious security issues

5 / 12



Undefined Behaviour
Worst bugs in C/C++: undefined behaviour

"Renders the entire program meaningless if certain rules of the
language are violated." (from cppreference.com)

program can crash (good!)
program can behave weirdly (pretty good!)
program can seem to behave normally (argh!)

Common sources include:
Reading an uninitialised variable
Reading/writing out of the bounds of an array
Dereferencing a NULL (0x0) pointer
Overflow in signed integer arithmetic
Dereferencing a freed pointer
Freeing a pointer twice
etc. 6 / 12



Array/Buffers Sizes, Integer Overflows
Keep track of your arrays' sizes
Be aware of type sizes on the architecture you target to avoid
overflows

sizeof()
Signed overflow: undefined behaviour

7 / 12



The C standard Library
Check man pages

Never use these functions, always unsafe:

gets (use fgets)
getwd (use getcwd)
readdir_r (use readdir)
More here: https://bit.ly/3ef4TBc

8 / 12

https://bit.ly/3ef4TBc


24-good-practices/strncpy-bug.c 

String Manipulation Functions
Use the n methods,

strcpy -> strncpy
sprintf -> snprintf
etc.

Even with the versions with n, some particularities
strncpy won't add \0 at the end of the target buffer

char string1[] = "hello, world";
char string2[32] = "xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx";

strncpy(string2, string1, strlen(string1));
printf("%s\n", string2); // prints "hello, worldxxxxxxxxxxxxxxxxxxx"

9 / 12

https://olivierpierre.github.io/comp26020-lectures/24-good-practices/src/strncpy-bug.c
https://github.com/olivierpierre/comp26020-devcontainer


Dynamic Memory Allocation
Check malloc return value
After free, the pointer is invalid

Cannot be dereferenced
Cannot be used (ex: comparison)

realloc returns null upon failure but does not free the old pointer
so this: ptr = realloc(ptr, new_size) is a leak

10 / 12



Summary & How to Learn More
Compile-time errors, easily reproducible runtime crashes and easily
detectable program behaviour divergence

Nice bugs, you can detect them
Undefined behaviour:

Nasty bugs, you can fail to notice them and it can lead to serious
vulnerabilities

Solution: write good code + some tools can help
How to learn more:

https://docs.fedoraproject.org/en-
US/Fedora_Security_Team/1/html/Defensive_Coding/index.html
Secure Coding in C and C++, 2nd edition by Robert C. Seacord

11 / 12

https://docs.fedoraproject.org/en-US/Fedora_Security_Team/1/html/Defensive_Coding/index.html


Feedback form
https://bit.ly/3CBOipk

12 / 12

https://bit.ly/3CBOipk

