
COMP26020 Programming Languages and Paradigms -- Part 1

Case Study: High Performance Computing
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C/C++ in HPC
C/C++ are extensively used in High Performance Computing (HPC)

because of their speed
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Due to many reasons, including the fact that they gives the
programmer control over the data memory layout
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Controlling Memory Layout
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For performance reasons it is very important to fit as much of the
data set as possible in the cache
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20-hpc-case-study/original.c 

typedef struct {
    char c[60];
    int i;
    double d;
} my_struct;

#define N 100000000
my_struct array[N];

int main(int argc, char **argv) {
    struct timeval start, stop, res;
    my_struct s;

    gettimeofday(&start, NULL);

    /* Randomly access N elements */
    for(int i=0; i<N; i++)
        memcpy(&s, &array[rand()%N],
            sizeof(my_struct));

    gettimeofday(&stop, NULL);
    timersub(&stop, &start, &res);
    printf("%ld.%06ld\n", res.tv_sec,
        res.tv_usec);

    return 0; }

Struct size: 60 + 4 (int) + 8
(double) = 72 bytes

Larger and not a multiple of
the cache line size (64 bytes)
Most objects in the array will
require to fetch 2 cache lines
from main memory
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Controlling Memory Layout
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https://olivierpierre.github.io/comp26020-lectures/20-hpc-case-study/src/original.c
https://github.com/olivierpierre/comp26020-devcontainer


20-hpc-case-study/optimized.c 
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About 25% faster!
How much is it on your
computer? check out your
CPU's cache line size with cat
/sys/devices/system/cpu/cpu0/
cache/index0/coherency_line_size

Controlling Memory Layout
typedef struct {
    char c[52]; // down from 60, we have 52 + 4 + 8 == 64 bytes i.e. a cache line
    int i;
    double d;
} my_struct;

my_struct array[N] __attribute__ ((aligned(64)));  /* force alignment of the array itself */

/* ... */
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https://olivierpierre.github.io/comp26020-lectures/20-hpc-case-study/src/optimized.c
https://github.com/olivierpierre/comp26020-devcontainer


Summary
C/C++ extensively used in HPC because of their speed

Run close to the hardware
No additional software layers
No runtime overhead
Integrates well with assembly
Control of the memory layout

Feedback form: https://bit.ly/3yz2jzh
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https://bit.ly/3yz2jzh

