
COMP26020 Part 1 Lab Assignment:
Matrix Processing Library in C

The goal of this assignment is to implement a matrix processing library in C, offering various matrix operations
such as transposition, matrix-matrix multiplication, scalar product, etc. To that aim you are given a header file
matrix.h containing the definitions (prototypes) of the different functions offered by the library API, and your
task is to implement each of these functions in a single C source file , matrix.c. To partially validate your
implementation, you are given a test suite in the form of a program that uses the library and performs various
sanity checks.

You can download an archive with the library header file, an empty matrix.c source file, as well as the test suite
sources and supporting files here:
https://olivierpierre.github.io/comp26020/lab/comp26020-lab1.zip.

Matrix Processing Library
The matrix.h header defines a data structure representing a matrix and a set of functions to create and destroy
matrix objects, to perform operations on matrices, and to save/load matrices on/from disk as files.

Matrix Data Structure. The data structure matrix_t represents a matrix. It has 3 fields: two integers recording the
number of rows and columns of the matrix, and a pointer of pointer of integers (i.e. a two-dimensional array)
holding the matrix’s content. Creating a matrix object is a two step process: the two dimensional array must first
be dynamically allocated, and then filled with the content of the matrix.

Exported Functions. The library’s header exports an API made of 13 functions to be implemented in the source
file. They can be classified into the following categories:

• Matrix allocation, initialisation, and destruction: matrix_allocate is used to allocate a matrix object
given its dimensions, and matrix_free deallocates an object. matrix_init_rand, matrix_init_n,
matrix_init_zeros, and matrix_init_identity respectively initialise the content of an already
allocated matrix object with random integers, a fixed integer n, zeros, and content corresponding to an
identity matrix1.

• Matrix operations2: matrix_equal checks if two matrices are equal. matrix_sum performs the sum of two
matrices. matrix_scalar_product multiplies a matrix by a scalar. matrix_transposition transposes a
matrix, and matrix_product performs the product of two matrices.

• Saving/Loading matrices as files: matrix_dump_file saves a matrix object into a file, and
matrix_allocate_and_init_file allocates a matrix object and loads its content from a file. The format
of such files is discussed below.

You should check the comments in matrix.h for more details about the expected behaviour of each function, in
particular what values functions should return, and whether they operate on matrix objects that need to have
been previously allocated or not.

You are free to develop additional functions within matrix.c. For example, a print_matrix function displaying a
matrix on the standard output could be useful for debugging purposes.

On-Disk Matrix File Format. The matrix file format is text-based: each row of the matrix is represented as a line in
the file, with the elements constituting the row being separated by spaces on that line. You can find examples of
matrix files in the matrix-samples/ directory of the archive.

Ideally, the matrix file loading function should be able to process files adhering to a non-strict definition of that
format, e.g. with variable amounts of spaces between the numbers on a line, possible empty lines to be ignored,
etc.

1 https://en.wikipedia.org/wiki/Identity_matrix
2 https://en.wikipedia.org/wiki/Matrix_(mathematics)#Basic_operations

https://olivierpierre.github.io/comp26020/lab/comp26020-lab1.zip
https://en.wikipedia.org/wiki/Matrix_(mathematics)#Basic_operations
https://en.wikipedia.org/wiki/Identity_matrix

Test Suites
Basic Test Suite. To test your code you are given a basic test suite implemented in a source file, basic-test-
suite.c. It is a C program (it contains a main function) that includes matrix.h. It creates matrix objects and tests
functions of the library’s API by performing sanity checks. This program uses the Unity3 test framework and
requires 3 additional source files to be compiled: unity.c, unity.h, and unity_internals.h. The test program
can be compiled as presented in the lecture concerning modular compilation.

The test suite should drive your implementation: you are encouraged to investigate the content of basic-test-
suite.c to understand how the library’s functions to be implemented should behave. The test suite is made of a
series of test cases, each invoked from main with the RUN_TEST() macro and defined in a self-contained function.
A test case will fail when one of the assertions it contain fails. For example the assertion
TEST_ASSERT_TRUE(<condition>) fails when condition evaluates to false (0 in C). See Unity’s website4 for a
reference on the other assertions used in the test suite. To complete the assignment, you do not need to
understand the content of unity.c, unity.h, and unity_internals.h. These files implement the Unity engine
and are rather complex.

Advanced Test Suite. The basic test suite is not fully comprehensive and, although passing all the tests it contains
means that a good chunk of the assignment has been accomplished and that the implementation seems
functional, it does not mean that everything is perfect. When marking, in addition to the basic test suite, an
extended one will be used, for which you do not have access to the tests’ details. This suite will include additional
functional tests, and will also check the robustness of your implementation against mistakes made in the usage of
the library API. To prepare for this advanced test suite, try to reason about:

• Possible functional tests missing in the basic test suite;

• How the library may be used in a C program and what programming mistakes could be made in the usage
of its API (e.g. trying to allocate a matrix with negative dimensions), as well as what runtime-level issues
could break assumptions you made when implementing certain functions (e.g. trying to load a matrix
from a file of wrong format.)

Here, being robust means that your implementation should make efforts to detect API/runtime misuses and take
proper actions when it happens.

Deliverables, Submission & Deadline
There is a single deliverable: the completed matrix.c file. The submission is made through the CS Department’s
Gitlab. You should have a fork of the repository named “26020-lab1-s-matrix_<your username>”. Submit your
deliverable by pushing the file on the default (main) branch and creating a tag named lab1-submission to
indicate that the submission is ready to be marked. Make sure you push to that precise repository and not
another one, and to tag your submission properly, failure to do so is likely to result in a mark of 0 for this
exercise.

You do not need to submit the library header file or any of the test suite’s files. This means that, when working on
the assignment, although you can edit these files for debugging purposes, upon submission your code should
eventually work with unmodified versions of these files.

The deadline for this assignment is Friday 14/11/2024 (14th of November) 2pm London time.

Marking Scheme
The exercise will be marked out of 10, using the following marking scheme:

• The program is functional and passes the basic test suite /4
• The program passes the advanced test suite /5
• The program follows the good C programming practices covered in the course regarding dynamic memory

allocation and usage of the C standard library functions /1

3 https://github.com/ThrowTheSwitch/Unity
4 https://github.com/ThrowTheSwitch/Unity/blob/master/docs/UnityAssertionsReference.md

https://gitlab.cs.man.ac.uk/
https://github.com/ThrowTheSwitch/Unity/blob/master/docs/UnityAssertionsReference.md
https://github.com/ThrowTheSwitch/Unity

	Matrix Processing Library
	Test Suites
	Deliverables, Submission & Deadline
	Marking Scheme

