COMP26020 Programming Languages and Paradigms Part 1: C Programming

Introduction to Pointers

COMP26020 | Pierre Olivier 1/15

Program Memory Layout

o Allthe program's code and data is present somewhere in memory

e The area of memory accessible by the program is the address space
o |t's alarge array of contiguous bytes
o Addresses are indexes in that array

Program memory >

Address: 0x0 0x1 O0x2 0x3 Ox4 0x5 0x6 O0x7 0x8 0x9 OxA 0xB 0xC 0xD OxE OxF 0x10 0x11

byte 0xTFFFFFFFFFEFF
(128 TB)

COMP26020 | Pierre Olivier 2/15

Program Memory Layout

o Allthe program's code and data is present somewhere in memory

e The area of memory accessible by the program is the address space
o |t's alarge array of contiguous bytes
o Addresses are indexes in that array

Program memory >

Address: 0x0 0x1 O0x2 0x3 Ox4 0x5 0x6 O0x7 0x8 0x9 OxA 0xB 0xC 0xD OxE OxF 0x10 0x11

byte 0xTFFFFFFFFFEFF
(128 TB)

o Note that this is virtual memory:
o Address space size independent from the amount of RAM
o Each program gets its own address space

COMP26020 | Pierre Olivier 2/15

Program Memory Layout

e Address of a variable: the address in memory of the first byte
storing that variable

COMP26020 | Pierre Olivier 3/15

Program Memory Layout

e Address of a variable: the address in memory of the first byte
storing that variable

int glob = 12;
char string[] = "abcd";

typedef struct {
int memberi;
float member2;
} mystruct;

int main(int argc, char **argv) {
mystruct ms;
ms.memberi1

42;

ms.member2 = 4.2;
printf("ms memberl: %d, member2: %f\n", ms.memberl, ms.member2);
return 0;

COMP26020 | Pierre Olivier 3/15

Program Memory Layout

e Address of a variable: the address in memory of the first byte
storing that variable

int glob = 12; // glob's address is 0x3300
char string[] = "abcd"; // string's address is 0x2f0

typedef struct {
int memberi;
float member2;
} mystruct;

int main(int argc, char **argv) {

mystruct ms; // ms' address is 0x123
ms.memberl = 42;
ms.member2 = 4.2;
printf("ms memberl: %d, member2: %f\n", ms.memberl, ms.member2);
return O;
}
Program memory >
Address: ‘Ox123 ‘Ox2f0 ‘Ox3300

OMP260220 | Pierre Olivie

Addresses

e Use the & operator to get the address of a variable

int glob = 12;
char string[] = "abcd";

typedef struct {
int memberi;
float member?2;
} mystruct;

int main(int argc, char **argv) {
mystruct ms = {1, 2.0};

// With modern processors an address is a 64 bits value so we need the right format

/] specifier: "%p", which will print the address in hexadecimal prefixed by "Ox",

// for example "0x12345"

printf("ms address: %p, glob address: %p, string address: %p\n", &ms, &glob, &string);
return 0;

09-pointers-introduction/ampersand.c oOr

COMP26020 | Pierre Olivier 5/15

https://olivierpierre.github.io/comp26020/slides/09-pointers-introduction/src/ampersand.c
https://github.com/olivierpierre/comp26020-devcontainer
https://www.programiz.com/online-compiler/7yAHIvXVqdjSA

Pointers

Pointer: variable that contains an address (possibly of another variable)

COMP26020 | Pierre Olivier 6/15

Pointers

Pointer: variable that contains an address (possibly of another variable)

e Declaration: <pointed type> *<pointer name>;

int v = 42;
int *ptr = &v;

COMP26020 | Pierre Olivier 6/15

Pointers

Pointer: variable that contains an address (possibly of another variable)

e Declaration: <pointed type> *<pointer name>;

int v = 42;
int *ptr = &v;

Program memory >

(int)

Address: 0xF120

COMP26020 | Pierre Olivier 6/15

Pointers

Pointer: variable that contains an address (possibly of another variable)

e Declaration: <pointed type> *<pointer name>;

int v = 42;
int *ptr = &v;

Program memory >
ptr v
int * (int)

Address: 0xF120

COMP26020 | Pierre Olivier 7/15

Pointers

Pointer: variable that contains an address (possibly of another variable)

e Declaration: <pointed type> *<pointer name>;

int v = 42;
int *ptr = &v;

Program memory >
ptr v
int * (int)

Address: 0xF120
64 bits

COMP26020 | Pierre Olivier 8/15

Pointers

Pointer: variable that contains an address (possibly of another variable)

e Declaration: <pointed type> *<pointer name>;

int v = 42;
int *ptr = &v;

Program memory >
ptr v
int * (int)

Address: 0xF120
64 bits

e We say that ptr points tov

COMP26020 | Pierre Olivier 8/15

Pointers

e Through a pointer it is possible to access the variable it points
e This is called dereferencing
e |tisachieved with the operator *

int v = 42;
int *ptr = &v;

printf("value pointed by ptr: %d\n", *ptr); /] 42

printf("v's value: %d\n", v); /] 42
*ptr = 0;
printf("value pointed by ptr: %d\n", *ptr); // ©
prlntf(v's value: %d\n 2 V); // 0 09-pointers-introduction/pointer-update.c P
Program memory >
ptr \4
int * (int)
Address: 0xF120

64 bits

COMP26020 | Pierre Olivier 9/15

https://olivierpierre.github.io/comp26020/slides/09-pointers-introduction/src/pointer-update.c
https://github.com/olivierpierre/comp26020-devcontainer
https://www.programiz.com/online-compiler/8xPP7c72wryiZ

Pointers

int glob = 12;
double glob2 = 4.4;

typedef struct { int memberl; double member2; } mystruct;

int main(int argc, char **argv) {
mystruct ms = {55, 2.23};

int *ptrl = &glob;
double *ptr2 = &glob2;
mystruct *ptr3 = &ms;

/* Print each pointer's value (pointed address), and pointed value (pointed variable) */
printf("ptrl = %p, *ptrl = %d\n", ptril, *ptri);
printf("ptr2 = %p, *ptr2 = %f\n", ptr2, *ptr2);
printf("ptr3 = %p, *(ptr3).memberl = %d, *(ptr3).member2 = %d\n",
ptr3, *(ptr3).memberl, *(ptr3).member2);

09-pointers-introduction/pointer.c oOr

COMP26020 | Pierre Olivier 10/ 15

https://olivierpierre.github.io/comp26020/slides/09-pointers-introduction/src/pointer.c
https://github.com/olivierpierre/comp26020-devcontainer
https://www.programiz.com/online-compiler/9CcauGK3FpH3w

Pointers

int glob = 12;
double glob2 = 4.4;

typedef struct { int memberl; double member2; } mystruct;

int main(int argc, char **argv) {
mystruct ms = {55, 2.23};

int *ptrl = &glob;
double *ptr2 = &glob2;
mystruct *ptr3 = &ms;

/* Print each pointer's value (pointed address), and pointed value (pointed variable) */
printf("ptrl = %p, *ptrl = %d\n", ptril, *ptri);
printf("ptr2 = %p, *ptr2 = %f\n", ptr2, *ptr2);
printf("ptr3 = %p, *(ptr3).memberl = %d, *(ptr3).member2 = %d\n",
ptr3, *(ptr3).memberl, *(ptr3).member2);

09-pointers-introduction/pointer.c oOr

glob glob2

https://olivierpierre.github.io/comp26020/slides/09-pointers-introduction/src/pointer.c
https://github.com/olivierpierre/comp26020-devcontainer
https://www.programiz.com/online-compiler/9CcauGK3FpH3w

Pointers

int glob = 12;
double glob2 = 4.4;

typedef struct { int memberl; double member2; } mystruct;

int main(int argc, char **argv) {
mystruct ms = {55, 2.23};

int *ptrl = &glob;
double *ptr2 = &glob2;
mystruct *ptr3 = &ms;

/* Print each pointer's value (pointed address), and pointed value (pointed variable) */
printf("ptrl = %p, *ptrl = %d\n", ptril, *ptri);
printf("ptr2 = %p, *ptr2 = %f\n", ptr2, *ptr2);
printf("ptr3 = %p, *(ptr3).memberl = %d, *(ptr3).member2 = %d\n",
ptr3, *(ptr3).memberl, *(ptr3).member2);

09-pointers-introduction/pointer.c oOr

itri ptr2 itrS glob glob2 ms

https://olivierpierre.github.io/comp26020/slides/09-pointers-introduction/src/pointer.c
https://github.com/olivierpierre/comp26020-devcontainer
https://www.programiz.com/online-compiler/9CcauGK3FpH3w

Pointers

int glob = 12;
double glob2 = 4.4;

typedef struct { int memberl; double member2; } mystruct;

int main(int argc, char **argv) {
mystruct ms = {55, 2.23};

int *ptrl = &glob;
double *ptr2 = &glob2;
mystruct *ptr3 = &ms;

/* Print each pointer's value (pointed address), and pointed value (pointed variable) */
printf("ptrl = %p, *ptrl = %d\n", ptril, *ptri);
printf("ptr2 = %p, *ptr2 = %f\n", ptr2, *ptr2);
printf("ptr3 = %p, *(ptr3).memberl = %d, *(ptr3).member2 = %d\n",
ptr3, *(ptr3).memberl, *(ptr3).member2);

09-pointers-introduction/pointer.c oOr

itrl ptr2 ptr3 glob glob2 ms

Address: 0x7ffd68413160
0x55a15aa3c038

0x55a15aa3c030

https://olivierpierre.github.io/comp26020/slides/09-pointers-introduction/src/pointer.c
https://github.com/olivierpierre/comp26020-devcontainer
https://www.programiz.com/online-compiler/9CcauGK3FpH3w

Pointers

int glob = 12;
double glob2 = 4.4;

typedef struct { int memberl; double member2; } mystruct;

int main(int argc, char **argv) {
mystruct ms = {55, 2.23};

int *ptrl = &glob;
double *ptr2 = &glob2;
mystruct *ptr3 = &ms;

/* Print each pointer's value (pointed address), and pointed value (pointed variable) */
printf("ptrl = %p, *ptrl = %d\n", ptril, *ptri);
printf("ptr2 = %p, *ptr2 = %f\n", ptr2, *ptr2);
printf("ptr3 = %p, *(ptr3).memberl = %d, *(ptr3).member2 = %d\n",
ptr3, *(ptr3).memberl, *(ptr3).member2);

09-pointers-introduction/pointer.c oOr

trl ptr2 ptr3 glob glob2 ms

0x55a15aa3c038

Address: 0x7ffd68413160
0x55a15aa3c038

0x55a15aa3c030

https://olivierpierre.github.io/comp26020/slides/09-pointers-introduction/src/pointer.c
https://github.com/olivierpierre/comp26020-devcontainer
https://www.programiz.com/online-compiler/9CcauGK3FpH3w

Summary

e A pointer: variable that stores an address corresponding to a
memory location
e Can access that location through the pointer

Feedback form: https://bit.ly/3fKzlzr

COMP26020 | Pierre Olivier 15/15

https://bit.ly/3fKzIzr

