MANCHESTER
1824

The University of Manchester

COMP35112 Chip Multiprocessors

Programming with Locks and
Barriers

Pierre Olivier

1/40

Synchronisation Mechanisms

e |namultithreaded program, threads rarely execute completely
Independently:
o |nmany scenarios they need to wait for each other and to
communicate by accessing shared data

COMP35112 | Department of Computer Science 2/40

Synchronisation Mechanisms

e |namultithreaded program, threads rarely execute completely
Independently:
o |nmany scenarios they need to wait for each other and to
communicate by accessing shared data
o Brings the need for synchronisation mechanisms

COMP35112 | Department of Computer Science

Synchronisation Mechanisms

e |namultithreaded program, threads rarely execute completely
Independently:
o |nmany scenarios they need to wait for each other and to
communicate by accessing shared data
o Brings the need for synchronisation mechanisms
e [nthislecturewe'll cover:
o Barriers: simple mechanism letting threads wait for each other
o Locks allowing threads to safely access shared data
o Condition variables for event signalling between threads

COMP35112 | Department of Computer Science

Barriers

3/40

Barriers

Time

Thread 1 _ Waiting
Thread 2 _ Waiting
Thread3 [Running [Waiting
Thread 4 _ _

COMP35112 | Department of Computer Science 4/40

Barriers

Time

Thread 1 _ Waiting
Thread 2 _ Waiting
Thread3 [Running [Waiting
Thread 4 _ _

e Abarrier is where a number of threads "meet up"
o When all threads have reached it, they can all proceed

COMP35112 | Department of Computer Science 5/40

Barriers

Step 1 Step 2

>
thveod > [Runing | Wating] [Resumes running.__]

Thread3 [Running [Waiting’

Thread 4

e Very natural when threads are used to implement data parallelism
o Want the whole answer from this step before proceeding to the
next step

COMP35112 | Department of Computer Science

Barriers

Iteration 1 Iteration 2
>
Thread 1 Running Waiting Resumes running
Thread 2 Running Waiting Resumes running
Thread 3 Running Waiting Resumes running
Thread 4 Running * Resumes running
Barrier

e Very natural when threads are used to implement data parallelism
o Want the whole answer from this step before proceeding to the
next step
e Would also use when data dependence limits loop parallelisation
o pthread_barrier_t allows multiple use!

COMP35112 | Department of Computer Science

Barrier Example

Thread 1| Running Waiting Running Waiting
Thread 2 Running Running
Time >

o Forcethread 2 to execute for alonger time than thread 1 at each
iteration

COMP35112 | Department of Computer Science

Barrier Example

Print thread n
reached barrier

Thread 1| Running Waiting Running Waiting
Thread 2 Running Running
Time >

o Forcethread 2 to execute for alonger time than thread 1 at each
iteration

COMP35112 | Department of Computer Science

Barrier Example

Print thread n
reached barrier

Thread 1| Running Waiting IRunning Waiting
Thread 2 Running I Running
Time >

o Forcethread 2 to execute for alonger time than thread 1 at each
iteration

COMP35112 | Department of Computer Science

Barrier Example

#define ITERATIONS 10 void *thread_fn(void *data) {
worker *arg = (worker *)data;
typedef struct { int id = arg->id;
int id; int iteration = 0;
int spin_amount;
pthread_barrier_t *barrier; while(iteration != ITERATIONS) {
} worker;

/* busy loop to simulate activity */
for(int 1=0; i<arg->spin_amount; i++);

printf("Thread %d reached barrier\n", id);

int r = pthread barrier_wait(arg->barrier);
if(r!=PTHREAD_BARRIER_SERIAL_THREAD && r) {
perror("pthread_barrier_wait");
exit(-1);
}

printf("Thread %d passed barrier\n", id);
iteration++;

pthread_exit(NULL);
} Code Sandbox

https://olivierpierre.github.io/comp35112/lectures/08-locks-barriers/src/listing1.c
https://sandbox.cs50.io/?script=wget%20https%3A%2F%2Folivierpierre.github.io%2Fcomp35112%2Flectures%2F08-locks-barriers%2Fsrc%2Flisting1.c&window=editor&window=terminal

Barrier Example

#include <err.h> // for errx

[* ... */

#define T1_SPIN_AMOUNT 200000000

#define T2_SPIN_AMOUNT (10 * T1_SPIN_AMOUNT)

int main(int argc, char **argv) {
pthread_t t1, t2;
pthread_barrier_t barrier;

worker wi
worker w2

{1, T1_SPIN_AMOUNT, &barrier};
{2, T2_SPIN_AMOUNT, &barrier};

if(pthread_barrier_init(&barrier, NULL, 2))
errx(-1, ("pthread barrier_init")); // equivalent of perror(msg); exit(-1);

if(pthread_create(&t1, NULL, thread_fn, (void *)&wl) ||
pthread create(&t2, NULL, thread fn, (void *)&w2))
errx(-1, "pthread create");

if(pthread_join(t1l, NULL) || pthread join(t2, NULL))
errx(-1, "phread_join");

return O;

¥ Code Sandbox
COMP35112 | Department of Computer Science 12 /40

https://olivierpierre.github.io/comp35112/lectures/08-locks-barriers/src/listing1.c
https://sandbox.cs50.io/?script=wget%20https%3A%2F%2Folivierpierre.github.io%2Fcomp35112%2Flectures%2F08-locks-barriers%2Fsrc%2Flisting1.c&window=editor&window=terminal

Locks

13/40

Locks: Motivational Example 1

e |ocks protect shared data
o Why do so?
e Cash machine example: cash withdrawal

COMP35112 | Department of Computer Science 14 /40

Locks: Motivational Example 1

e |ocks protect shared data
o Why do so?
e Cash machine example: cash withdrawal

int total = get _total from_account(); /* total funds in user account */
int withdrawal = get_withdrawal amount(); /* amount user asking to withdraw */

/* check whether the user has enough funds in her account */
if(total < withdrawal)
abort("Not enough money!");

/* The user has enough money, deduct the withdrawal amount from here total */
total -= withdrawal;
update_total funds(total);

/* give the money to the user */
spit_out_money(withdrawal);

COMP35112 | Department of Computer Science 14 /40

Locks: Motivational Example 1

int total = get total from_account();
int withdrawal = get_withdrawal_amount();

if(total < withdrawal)
abort("Not enough money!");

total -= withdrawal;
update_total funds(total);

spit_out _money(withdrawal);

COMP35112 | Department of Computer Science 15/40

Locks: Motivational Example 1

int total = get_total_from_account(); e Assume 2 transactions are

int withdrawal = get_withdrawal_amount(); .
hapenning nearly at the same
if(total < withdrawal)

abort("Not enough money!"); tiﬂqﬁf
total -= withdrawal; o E.g. shared credit card
update_total funds(total); account
spit_out _money(withdrawal); ° ASSUFﬂ@I total —— 105,

withdrawall == 100,
withdrawal2 == 10
o Shouldfail as (100+10)>105

COMP35112 | Department of Computer Science 16/40

Locks: Motivational Example 1

int total = get_total_from_account(); e total == 105 withdrawall == 100,
int withdrawal = get_withdrawal_amount(); withdrawal2 == 10
if(total < withdrawal) e Apossible scenario:

2IETEL OIS Enengn feneyl)t 1. Threads get total in local variable,

total -= withdrawal; both get 105
update_total_funds(total); 2. Threads check that 100 < 105 and
spit_out _money(withdrawal); 10 < 105
= All good
3. Thread 1 updates:
m total = 105 - 100 = 5
m ypdate total funds(5)
4. Slightly later thread 2 updates:
= total = 105 - 10 = 95
m ypdate_total funds(95)

COMP35112 | Department of Computer Science 17/40

Locks: Motivational Example 1

int total = get_total_from_account(); e total == 105 withdrawall == 100,
int withdrawal = get_withdrawal_amount(); withdrawal2 == 10
if(total < withdrawal) e Apossible scenario:

2IETEL OIS Enengn feneyl)t 1. Threads get total in local variable,

total -= withdrawal; both get 105
HPSCld i LT S Gt L 2. Threads check that 100 < 105 and

spit_out_money(withdrawal); 10 < 105
= All good
Total withdrawal: 110, and there is 3. Thread 1 updates:
95 left on the account! " total = 105 - 100 = 5
Free money $'$" m ypdate total funds(5)

4. Slightly later thread 2 updates:
= total = 105 - 10 = 95

e Race condition: operations on
m ypdate_total funds(95)

shared state should not happen
atthe same time

Locks: Motivational Example 2

e Consider the 1++ statement
o Couldtranslate into machine code as:

1. load the current value of i1 from memory and copy it into a register
2. add one to the value stored into the register
3. store from the register to memory the new value of 1

COMP35112 | Department of Computer Science 18/40

Locks: Motivational Example 2

e Consider the 1++ statement
o Couldtranslate into machine code as:

1. load the current value of i1 from memory and copy it into a register
2. add one to the value stored into the register
3. store from the register to memory the new value of 1

Thread 1 Thread 2
A possible scenariowhen 2 threads 1529 (7) i
execute i1++: increnent i (7-8) |-
store i (8§ -
load i (8)
increnent i (89)
store i (9

COMP35112 | Department of Computer Science 19/40

Locks: Motivational Example 2

e Consider the 1++ statement
o Couldtranslate into machine code as:

1. load the current value of i1 from memory and copy it into a register
2. add one to the value stored into the register
3. store from the register to memory the new value of i

. . Thread 1 Thread 2
Another possible scenario: Race load i (7) load i (7)
condition increnent i (7-8)

increnent i (7—8)

e Need locks to serialise accessto |store i (8 :
shared data, i.e. to ensure that : store i (8
critical sections are executed
atomically

COMP35112 | Department of Computer Science 20/40

Locks

o Bitsof code inour program where shared data is accessed/updated
are called critical sections

COMP35112 | Department of Computer Science 21/40

Locks

o Bitsof code inour program where shared data is accessed/updated

are called critical sections
e Lock: synchronisation primitive enforcing limits on the execution of

acritical section:
o Amount of threads that can concurrently execute it (generally 1,

serialisation)
o Atomicity: when a thread starts to run a critical section, it must

finish it before another thread can enter the critical section

COMP35112 | Department of Computer Science 21/40

Locks

e Critical sections can be protected with locks:
o Onlyone thread can hold a given lock at a time
o Holding the lock lets the thread enter and execute the
corresponding critical section

COMP35112 | Department of Computer Science 22/40

Locks

e Critical sections can be protected with locks:
o Onlyone thread can hold a given lock at a time
o Holding the lock lets the thread enter and execute the
corresponding critical section
e [hreadswishingtoenter the critical section try to take the lock:
o Athread attempting to take a free lock will get it
o Otherthreads requesting the lock wait until the lock is released by
its holder

COMP35112 | Department of Computer Science 22/40

Locks

e Critical sections can be protected with locks:
o Onlyone thread can hold a given lock at a time
o Holding the lock lets the thread enter and execute the
corresponding critical section

Time >

Thread 1 _
Thread 2 _

COMP35112 | Department of Computer Science 23/40

Locks

e Critical sections can be protected with locks:
o Onlyone thread can hold a given lock at a time
o Holding the lock lets the thread enter and execute the
corresponding critical section

Time >

Thread 1 | Running
try lock got lock

try lock lock already taken

Thread 2 | Running Waiting

COMP35112 | Department of Computer Science 24/40

Locks

e Critical sections can be protected with locks:
o Onlyone thread can hold a given lock at a time
o Holding the lock lets the thread enter and execute the
corresponding critical section

Time >

Thread 1 _

release lock

try lock got lock

Thread 2 [_Running | [Waiting

COMP35112 | Department of Computer Science 25/40

Locks

e Critical sections can be protected with locks:
o Onlyone thread can hold a given lock at a time
o Holding the lock lets the thread enter and execute the
corresponding critical section

Time >

Thread 1 [Running'| [Griticalsection]]

release lock
Thread 2 [_Running | [Waiting

COMP35112 | Department of Computer Science 26/40

Pthreads Mutexes

o Mutexes: mutual exclusion locks

#include <pthread.h>

pthread_mutex_t mutex;

void my_thread_function() {
pthread_mutex_lock(&mutex);
/* critical section here */

pthread _mutex_unlock(&mutex);

COMP35112 | Department of Computer Science 27/40

Pthreads Mutexes

o Mutexes: mutual exclusion locks

#include <pthread.h>

pthread_mutex_t mutex;

void my_thread_function() {
pthread_mutex_lock(&mutex);
/* critical section here */

pthread _mutex_unlock(&mutex);

Important:
in the next examples we omit pthread functions return code checking
for the sake of brevity, but note that almost all of them can fail!

COMP35112 | Department of Computer Science 27/40

Lock Usage Example

e Bounded buffer: circular FIFO producer-consumer buffer

3 ;
extract \; a

\deAposit
B~

COMP35112 | Department of Computer Science

Lock Usage Example

typedef struct {

int *buffer; // the buffer

int max_elements; // size of the buffer

int in_index; // index of the next free slot

int out_index; // index of the next message to extract
int count; // number of used slots

pthread_mutex_t lock; // lock protecting the buffer
} bounded buffer;

int init_bounded_buffer(bounded buffer *b, int size) {
b->buffer = malloc(size * sizeof(int));
if(!b->buffer)
return -1;

b->max_elements = size;

b->in_index = 0;

b->out_index = 0;

b->count = 0;

pthread mutex_init(&b->lock, NULL);
return 0;

}

void destroy_bounded_buffer(bounded buffer *b) {
free(b->buffer);

} Code Sandbox
o e] TN

https://olivierpierre.github.io/comp35112/lectures/08-locks-barriers/src/listing2.c
https://sandbox.cs50.io/?script=wget%20https%3A%2F%2Folivierpierre.github.io%2Fcomp35112%2Flectures%2F08-locks-barriers%2Fsrc%2Flisting2.c&window=editor&window=terminal

Lock Usage Example (continued)

void deposit(bounded buffer *b, int message) {
pthread_mutex_lock(&b->lock);

int full = (b->count == b->max_elements);

while(full) {
// buffer is full, can't deposit! Release the lock and wait a bit
// to give another thread a chance to extract an element
pthread mutex_unlock(&b->1lock);
usleep(100);
pthread _mutex_ lock(&b->lock);

// i1s the buffer still full?
full = (b->count == b->max_elements);

}

// perform deposit

b->buffer[b->in_1index] = message;

b->in_index = (b->in_index + 1) % b->max_elements;
b->count++;

pthread_mutex_unlock(&b->1lock);

} Code Sandbox

COMP35112 | Department of Computer Science 30/40

https://olivierpierre.github.io/comp35112/lectures/08-locks-barriers/src/listing2.c
https://sandbox.cs50.io/?script=wget%20https%3A%2F%2Folivierpierre.github.io%2Fcomp35112%2Flectures%2F08-locks-barriers%2Fsrc%2Flisting2.c&window=editor&window=terminal

Lock Usage Example (continued)

int extract(bounded buffer *b) {
pthread_mutex_lock(&b->lock);

int empty = !(b->count);

while(empty) {
// buffer is empty, nothing to extract! Release the lock and wait a bit
// to give another thread a chance to deposit an element
pthread mutex_unlock(&b->1lock);
usleep(100);
pthread _mutex_ lock(&b->lock);

// i1s the buffer still empty?
empty = !(b->count);
}

// perform extract

int message = b->buffer[b->out_1index];

b->out_index = (b->out_index + 1) %
b->max_elements;

b->count--;

pthread_mutex_unlock(&b->1lock);
return message;

¥ Code Sandbox

https://olivierpierre.github.io/comp35112/lectures/08-locks-barriers/src/listing2.c
https://sandbox.cs50.io/?script=wget%20https%3A%2F%2Folivierpierre.github.io%2Fcomp35112%2Flectures%2F08-locks-barriers%2Fsrc%2Flisting2.c&window=editor&window=terminal

Lock Usage Example (continued)

typedef struct {
int iterations;

#define BUFFER_SIZE 100
int main(int argc, char **argv) {

bounded_buffer *bb;
} worker;

void *deposit_thread_fn(void *data) {
worker *w = (worker *)data;
for(int 1=0; i<w->iterations; i++) {
deposit(w->bb, 1);
printf("[deposit thread] put %d\n", 1);
}
pthread exit(NULL);

}

void *extract_thread_fn(void *data) {
worker *w = (worker *)data;
for(int 1=0; i<w->iterations; i++) {
int x = extract(w->bb);
printf("[extract thread] got %d\n", x);

}
pthread exit(NULL);

}

bounded_buffer b;
pthread_t t1, t2;

if(init_bounded buffer(&b, BUFFER_SIZE)) {
/* error */

}
worker wl = {BUFFER_SIZE*2, &b};
worker w2 = {BUFFER_SIZE*2, &b};

pthread create(&t1, NULL, deposit_thread fn,
(void *)&wl);

pthread create(&t2, NULL, extract_thread fn,
(void *)&w2);

pthread_join(t1l, NULL);
pthread_join(t2, NULL);
destroy_bounded_buffer(&b);
return 0;

Code Sandbox

COMP35112 | Department of Computer Science 32/40

https://olivierpierre.github.io/comp35112/lectures/08-locks-barriers/src/listing2.c
https://sandbox.cs50.io/?script=wget%20https%3A%2F%2Folivierpierre.github.io%2Fcomp35112%2Flectures%2F08-locks-barriers%2Fsrc%2Flisting2.c&window=editor&window=terminal

Omit the Locks and ...

COMP35112 | Department of Computer Science

Omit the Locks and ...

e Madness ensues (&)

COMP35112 | Department of Computer Science 33/40

Omit the Locks and ...

e Madnessensues (+
e Could havetwo threads indeposit() both writing to the same
element of buffer
o Onevalueis lost

COMP35112 | Department of Computer Science 33/40

Omit the Locks and ...

e Madness ensues (&)
e Could havetwo threads indeposit() both writing to the same
element of buffer
o Onevalueis lost
e Couldtheneither increment in_index
o Once: whole call of deposit() lost
o Twice: spurious (old) value apparently deposited

COMP35112 | Department of Computer Science 33/40

Omit the Locks and ...

e Madness ensues (&
e Could havetwo threads indeposit() both writing to the same
element of buffer
o Onevalueis lost
e Couldtheneither increment in_index
o Once: whole call of deposit() lost
o Twice: spurious (old) value apparently deposited
o Similarly for two calls of extract()
e Evenproblems between a call of deposit() and one of extract(), e.g.
both change count

COMP35112 | Department of Computer Science 33/40

Omit the Locks and ...

—_

e Madness ensues (&
e Could havetwo threads indeposit() both writing to the same
element of buffer
o Onevalueis lost
e Couldtheneither increment in_index
o Once: whole call of deposit() lost
o Twice: spurious (old) value apparently deposited
o Similarly for two calls of extract()
e Evenproblems between a call of deposit() and one of extract(), e.g.
both change count

Concurrency issues can be extremelyhard to debugin
medium/large scale programs

COMP35112 | Department of Computer Science 33/40

Omit the Locks and ...

/* BUGGY version of deposit, without locks */
void deposit(bounded buffer *b, int message) {

while (b->count == b->max_elements);

b->buffer[b->in_index] = message;
b->in_index = (b->in_index + 1) % b->max_elements;
b->count++;

}

/* BUGGY version of extract, without locks */
int extract(bounded buffer *b) {

while (!(b->count));
int message = b->buffer[b->out_1index];
b->out_index = (b->out_index + 1) % b->max_elements;

b->count--;

return message;

¥ Code Sandbox

COMP35112 | Department of Computer Science 34/40

https://olivierpierre.github.io/comp35112/lectures/08-locks-barriers/src/listing3.c
https://sandbox.cs50.io/?script=wget%20https%3A%2F%2Folivierpierre.github.io%2Fcomp35112%2Flectures%2F08-locks-barriers%2Fsrc%2Flisting3.c&window=editor&window=terminal

Condition Variables

35/40

Event Signalling

e Sleepingor busy-waiting for the buffer to be non-full/non-empty is

suboptimal
while(full) { while(full) {
pthread_mutex_unlock(&b->1lock); pthread mutex_unlock(&b->1lock);
usleep(100); /* busy wait */
pthread _mutex_lock(&b->lock); pthread _mutex_lock(&b->lock);
full = (b->count == b->max_elements); full = (b->count == b->max_elements);
} }

o Withtheusleepsettoanarbitrary time, may sleep for a much longer
time than needed
o Without usleep, keep trying non-stop, monopolising the CPU

COMP35112 | Department of Computer Science 36/40

Event Signalling

e Sleepingor busy-waiting for the buffer to be non-full/non-empty is

suboptimal
while(full) { while(full) {
pthread_mutex_unlock(&b->1lock); pthread mutex_unlock(&b->1lock);
usleep(100); /* busy wait */
pthread _mutex_lock(&b->lock); pthread _mutex_lock(&b->lock);
full = (b->count == b->max_elements); full = (b->count == b->max_elements);
} }
Time > Time >
Thread 2 | Running | Waiting (another task runs) Thread 2 | Running| Busy-waiting _
sleep () Isleep ()

COMP35112 | Department of Computer Science 37/40

Condition Variables

Time
>
e Best of both worlds: thread Thread 1 [Running ISl Running
wakes up ﬂght when needed Thread 2 | Running| Waiting (another task runs)
) L. ’ sleep () Isleep ()
without monopolising the CPU .
ime >

by spinning Thread 1 [RUnmng I Runig
Thread 2 | Running| Busy-waiting _

Time >

Running
cond_signal (

Thread 1

Thread 2 | Running Waiting

cond_wait ()

COMP35112 | Department of Computer Science 38/40

Condition Variables

void deposit(bounded_buffer *b, int message) {
pthread mutex_lock(&b->1lock);

int full = (b->count == b->max_elements);
while(full) {
// wait on condfull to be signalled
// when the buffer becomes non-full
pthread _cond_wait(&b->condfull, &b->lock);
full = (b->count == b->max_elements);

}

b->buffer[b->in_index] = message;
b->in_index = (b->in_index + 1) %
b->max_elements;

// signal condempty if buffer becomes

// non-empty

if(b->count++ == 0)
pthread_cond_signal(&b->condempty);

pthread _mutex_unlock(&b->1lock);

int extract(bounded buffer *b) {

pthread mutex_lock(&b->1lock);

int empty = !(b->count);

while(empty) {
// wait on condempty to be signalled
// when the buffer becomes non-empty
pthread_cond_wait(&b->condempty, &b->lock);
empty = !(b->count);

}

int message = b->buffer[b->out_1index];
b->out_index = (b->out_index + 1) %
b->max_elements;

// signal condfull if buffer becomes

// non-full

if(b->count-- == b->max_elements)
pthread_cond_signal(&b->condfull);

pthread mutex_unlock(&b->lock);
return message;

Code Sandbox

https://olivierpierre.github.io/comp35112/lectures/08-locks-barriers/src/listing4.c
https://sandbox.cs50.io/?script=wget%20https%3A%2F%2Folivierpierre.github.io%2Fcomp35112%2Flectures%2F08-locks-barriers%2Fsrc%2Flisting4.c&window=editor&window=terminal

Summary

e [hread needtosyncup and access shared data
o Need for synchronisation mechanisms such as barriers, locks,
condition variables

e Shared memory multithreading opens up the risk of race conditions

o When a shared resource is accessed by multiple threads at the
same time, including at least a write access

e Next lecture: more about locks

COMP35112 | Department of Computer Science 40/40

