
COMP35112 Chip Multiprocessors

Hardware Support for
Synchronisation

Pierre Olivier

1 / 19

COMP35112 | Department of Computer Science

Implementing Synchronisation

Shared-memory programming requires synchronisation mechanisms
to protect
shared data

2 / 19

COMP35112 | Department of Computer Science

Implementing Synchronisation

Shared-memory programming requires synchronisation mechanisms
to protect
shared data
Mechanisms can take several forms

But all are closely related and most can be built from the others

2 / 19

COMP35112 | Department of Computer Science

Implementing Synchronisation

Shared-memory programming requires synchronisation mechanisms
to protect
shared data
Mechanisms can take several forms

But all are closely related and most can be built from the others
Their implementation usually requires hardware support

2 / 19

COMP35112 | Department of Computer Science

Implementing Synchronisation

Shared-memory programming requires synchronisation mechanisms
to protect
shared data
Mechanisms can take several forms

But all are closely related and most can be built from the others
Their implementation usually requires hardware support
We'll have a look at one of the simplest constructs

A lock called binary semaphore, in a processor with a snoopy
cache

Can be held by at most 1 thread
Waiting threads use busy-waiting

2 / 19

COMP35112 | Department of Computer Science

Example: Binary Semaphore

It's a single shared "boolean" variable S which value is used to protect
a shared resource

S == 0 ➡ resource is free
S == 1 ➡ resource is in use

3 / 19

COMP35112 | Department of Computer Science

Example: Binary Semaphore

It's a single shared "boolean" variable S which value is used to protect
a shared resource

S == 0 ➡ resource is free
S == 1 ➡ resource is in use

Semaphore operations (should be atomic)
wait(S): wait until S != 1 then set S = 1 (i.e. take the lock)
signal(S): set S = 0 (i.e. release the lock)

3 / 19

COMP35112 | Department of Computer Science

Semaphore Usage to Protect
Critical Sections

Critical sections are the code sections where shared resources are
manipulated

Thread 1 Thread 2
wai t (S) wai t (S)

updat e shar ed dat a

si gnal (S)

updat e shar ed dat a

si gnal (S)

S should be initialised as 0

4 / 19

COMP35112 | Department of Computer Science

Atomicity Needed

How to implement wait(S)?

5 / 19

COMP35112 | Department of Computer Science

// naive implementation in C:
while(S == 1);
S = 1;

Atomicity Needed

How to implement wait(S)?

5 / 19

COMP35112 | Department of Computer Science

// naive implementation in C:
while(S == 1);
S = 1;

// address of `S` in `%r2`
loop: ldr %r1, %r2
 cmp %r1, $1
 beq loop
 str $1, %r2

Atomicity Needed

How to implement wait(S)?

5 / 19

COMP35112 | Department of Computer Science

// naive implementation in C:
while(S == 1);
S = 1;

// address of `S` in `%r2`
loop: ldr %r1, %r2
 cmp %r1, $1
 beq loop
 str $1, %r2

What if another thread changes
the value of S?

Thread 1 Thread 2
l dr %r 1, %r 2

cmp %r 1, $1 l dr %r 1, %r 2

beq l oop cmp %r 1, $1

st r $1, %r 2 beq l oop

st r $1, %r 2

Atomicity Needed

How to implement wait(S)?

5 / 19

COMP35112 | Department of Computer Science

// naive implementation in C:
while(S == 1);
S = 1;

// address of `S` in `%r2`
loop: ldr %r1, %r2
 cmp %r1, $1
 beq loop
 str $1, %r2

What if another thread changes
the value of S?

Thread 1 Thread 2
l dr %r 1, %r 2

cmp %r 1, $1 l dr %r 1, %r 2

beq l oop cmp %r 1, $1

st r $1, %r 2 beq l oop

st r $1, %r 2

Both threads got the lock!

The lock itself is a shared data
structure...

Atomicity Needed

How to implement wait(S)?

5 / 19

COMP35112 | Department of Computer Science

Atomic Instructions

We need to ensure that the execution of wait() is "indivisible"
I.e. it should be atomic: once a thread starts to execute wait() it
should first finish it before any other thread can start it

6 / 19

COMP35112 | Department of Computer Science

Atomic Instructions

We need to ensure that the execution of wait() is "indivisible"
I.e. it should be atomic: once a thread starts to execute wait() it
should first finish it before any other thread can start it

Requires special instructions to be supported in hardware: atomic
instructions

Special CPU instructions that realise a few operations atomically
Operations are generally a memory load, a comparison, and
possibly a memory write

6 / 19

COMP35112 | Department of Computer Science

Atomic Instructions

We need to ensure that the execution of wait() is "indivisible"
I.e. it should be atomic: once a thread starts to execute wait() it
should first finish it before any other thread can start it

Requires special instructions to be supported in hardware: atomic
instructions

Special CPU instructions that realise a few operations atomically
Operations are generally a memory load, a comparison, and
possibly a memory write

Implementing synchronisation primitives like wait() with these
instructions
involves a compromise between complexity and
performance

6 / 19

COMP35112 | Department of Computer Science

Atomic Instructions

We need to ensure that the execution of wait() is "indivisible"
I.e. it should be atomic: once a thread starts to execute wait() it
should first finish it before any other thread can start it

Requires special instructions to be supported in hardware: atomic
instructions

Special CPU instructions that realise a few operations atomically
Operations are generally a memory load, a comparison, and
possibly a memory write

Implementing synchronisation primitives like wait() with these
instructions
involves a compromise between complexity and
performance
Also note that variable S when accessed will be cached, possibly in
several core caches, and the desired atomic behaviour
might require
coherence operations in the cache

6 / 19

COMP35112 | Department of Computer Science

Atomic Test-And-Set Instruction

Simple solution in older CPUs, e.g. Motorola 68K

tas %r2

If memory location addressed by %r2 contains 0, switch its content to 1
and set the CPU "zero" flag, otherwise clear zero flag.

7 / 19

COMP35112 | Department of Computer Science

Atomic Test-And-Set Instruction

Simple solution in older CPUs, e.g. Motorola 68K

tas %r2

If memory location addressed by %r2 contains 0, switch its content to 1
and set the CPU "zero" flag, otherwise clear zero flag.
Instruction-level behaviour is atomic

Cannot be interrupted
No other core can modify what is pointed by %r2 in memory while
the tas
runs

7 / 19

COMP35112 | Department of Computer Science

Atomic Test-And-Set Instruction

CPU

0x42%r2

Zero flag
0x42 0

Memory CPU

0x42%r2

1Zero flag
0x42 1

Memory

tas %r2

8 / 19

COMP35112 | Department of Computer Science

Atomic Test-And-Set Instruction

CPU

0x42%r2

Zero flag
0x42 0

Memory CPU

0x42%r2

1Zero flag
0x42 1

Memory

tas %r2

CPU

0x42%r2

Zero flag
0x42 1

Memory CPU

0x42%r2

0Zero flag
0x42 1

Memory

tas

tas %r2

8 / 19

COMP35112 | Department of Computer Science

Our Semaphore with tas

Remember that for our semaphore:

Lock is free when S == 0
Lock is taken when S == 1

How to implement wait() and signal with test-and-set?

9 / 19

COMP35112 | Department of Computer Science

Wait operation (taking the lock):

// Address of S in %r2
// Loops (i.e. wait) while [%r2] != 0
loop: tas %r2
 bnz loop // branch if zero flag not set

Signal operation (releasing the lock):

// We assume that basic store operations
// are atomic
// Address of S in %r2
str $0, %r2

Our Semaphore with tas

Remember that for our semaphore:

Lock is free when S == 0
Lock is taken when S == 1

How to implement wait() and signal with test-and-set?

9 / 19

COMP35112 | Department of Computer Science

What About the Cache?

Semaphore operation with test-and-set is reasonably obvious if S is a
single
shared variable in memory
Just tas for wait() and str for signal() on that single variable

10 / 19

COMP35112 | Department of Computer Science

What About the Cache?

Semaphore operation with test-and-set is reasonably obvious if S is a
single
shared variable in memory
Just tas for wait() and str for signal() on that single variable
tas is an atomic read-modify-write (RMW) instruction and as such it
is expensive:

May involve 2 memory accesses (R & W)
Locks the access to memory from other processors to ensure
atomicity

10 / 19

COMP35112 | Department of Computer Science

What About the Cache?

Semaphore operation with test-and-set is reasonably obvious if S is a
single
shared variable in memory
Just tas for wait() and str for signal() on that single variable
tas is an atomic read-modify-write (RMW) instruction and as such it
is expensive:

May involve 2 memory accesses (R & W)
Locks the access to memory from other processors to ensure
atomicity

By definition S is shared: this is the fundamental purpose of a
semaphore

Processors are therefore likely to end up with a copy of S in their
cache

10 / 19

COMP35112 | Department of Computer Science

Test-and-Set and the Cache

Assume shared variable S in the cache
Only when a tas succeeds (reads 0) it must then write a 1

11 / 19

COMP35112 | Department of Computer Science

Test-and-Set and the Cache

Assume shared variable S in the cache
Only when a tas succeeds (reads 0) it must then write a 1

When tas starts, don't know if a write will be needed or not...
... if it is, need to send an invalidate message to other cores

11 / 19

COMP35112 | Department of Computer Science

Test-and-Set and the Cache

Assume shared variable S in the cache
Only when a tas succeeds (reads 0) it must then write a 1

When tas starts, don't know if a write will be needed or not...
... if it is, need to send an invalidate message to other cores
So the processor must 'lock' the snoopy bus for every
multiprocessor tas
operation

Cannot let any other core do a write

11 / 19

COMP35112 | Department of Computer Science

Test-and-Set and the Cache

Assume shared variable S in the cache
Only when a tas succeeds (reads 0) it must then write a 1

When tas starts, don't know if a write will be needed or not...
... if it is, need to send an invalidate message to other cores
So the processor must 'lock' the snoopy bus for every
multiprocessor tas
operation

Cannot let any other core do a write
But if it ends up reading a '1' (lock not available), this locking
of
the bus was wasted because the tas was read-only...

11 / 19

COMP35112 | Department of Computer Science

Test-and-Set and the Cache

Assume one thread has the lock: S is busy
Another wanting the semaphore will read this busy value and cache it
It will then sit in a loop continually executing a tas until S becomes free

12 / 19

COMP35112 | Department of Computer Science

Test-and-Set and the Cache

Assume one thread has the lock: S is busy
Another wanting the semaphore will read this busy value and cache it
It will then sit in a loop continually executing a tas until S becomes free

All this time it will be wasting bus cycles
Slowing down cache coherence traffic from other cores

12 / 19

COMP35112 | Department of Computer Science

Test-and-Set and the Cache

Assume one thread has the lock: S is busy
Another wanting the semaphore will read this busy value and cache it
It will then sit in a loop continually executing a tas until S becomes free

All this time it will be wasting bus cycles
Slowing down cache coherence traffic from other cores

Can address that issue with a simple re-formulation of the wait
operation:
test-and-test-and-set

Tries to minimise the amount of costly test-and-set

12 / 19

COMP35112 | Department of Computer Science

In pseudo-code:

do {
 while(test(S) == 1); // traditional ldr
} while (test-and-set(S));// tas

//

Test-and-test-and-set

How to implement wait() with test-and-test-and-set?

13 / 19

COMP35112 | Department of Computer Science

In pseudo-code:

do {
 while(test(S) == 1); // traditional ldr
} while (test-and-set(S));// tas

//

In assembly:

loop: ldr %r1, %r2 /* address of S in %r2 */
 cmp %r1, $1
 beq loop
 tas %r2
 bnz loop /* branch if %r2 != 0 */

Test-and-test-and-set

How to implement wait() with test-and-test-and-set?

13 / 19

COMP35112 | Department of Computer Science

In pseudo-code:

do {
 while(test(S) == 1); // traditional ldr
} while (test-and-set(S));// tas

//

In assembly:

loop: ldr %r1, %r2 /* address of S in %r2 */
 cmp %r1, $1
 beq loop
 tas %r2
 bnz loop /* branch if %r2 != 0 */

Test-and-test-and-set

How to implement wait() with test-and-test-and-set?

Key idea:
Most of the time we busy wait with a standard ldr
Only once S is seen to be free, a (costly) tas is made

13 / 19

COMP35112 | Department of Computer Science

Other Synchronisation Primitives

Other machine level atomic instructions:

14 / 19

COMP35112 | Department of Computer Science

Other Synchronisation Primitives

Other machine level atomic instructions:
fetch-and-add: returns the value of a memory location and
increments it

// in pseudo-code
fetch_and_add(addr, incr) {
 old_val = *addr;
 *addr += incr;
 return old_val;
}

14 / 19

COMP35112 | Department of Computer Science

Other Synchronisation Primitives

Other machine level atomic instructions:
fetch-and-add: returns the value of a memory location and
increments it
compare-and-swap: compares the value of a memory location
with a value
(in a register) and swap in another value (in a register)
if they are equal

// in pseudo-code
compare_and_swap(addr, comp, new_val) {
 if(*addr != comp)
 return false;

 *addr = new_val;
 return true;
}

15 / 19

COMP35112 | Department of Computer Science

Other Synchronisation Primitives

Other machine level atomic instructions:
fetch-and-add: returns the value of a memory location and
increments it
compare-and-swap: compares the value of a memory location
with a value
(in a register) and swap in another value (in a register)
if they are equal

All these instructions are RMW with the need to lock
the snoopy
bus during their execution

16 / 19

COMP35112 | Department of Computer Science

Other Synchronisation Primitives

Other machine level atomic instructions:
fetch-and-add: returns the value of a memory location and
increments it
compare-and-swap: compares the value of a memory location
with a value
(in a register) and swap in another value (in a register)
if they are equal

All these instructions are RMW with the need to lock
the snoopy
bus during their execution
Not really desirable with all CPU designs:

Doesn’t fit well with simple RISC pipelines, where RMW is really a
CISC instruction requiring a memory load operation, a comparison,
and possibly a store operation

16 / 19

COMP35112 | Department of Computer Science

Lock-Free Data Structures

Atomic instructions can be used for other goals than implementing
locks
Lock-Free data structures: data structures that can be accessed
concurrently without locks through the use of atomic instructions

Lists, stacks, etc.
They are generally hard to implement:

Updating their state requires more than the single memory store
operation done by RMW instructions
Hard to know when a member of the data structure can be freed on
languages without garbage collectors (e.g. C/C++)

Benefits: they can be faster than lock-based data structures

17 / 19

COMP35112 | Department of Computer Science

Lock-Free Data Structures

Lock-free queue implementation examples:
In Java: https://github.com/olivierpierre/comp35112-
devcontainer/tree/main/10-hardware-synchronisation/lock-free-
queue-java

Not too hard because Java has a GC, still not entirely trivial
In C: https://github.com/olivierpierre/comp35112-
devcontainer/tree/main/10-hardware-synchronisation/lock-free-
queue-c

A bit convoluted/hacky
More info: https://www.baeldung.com/lock-free-programming and
"The Art of Multiprocessor Programming" chapters 10 and 11

18 / 19

https://github.com/olivierpierre/comp35112-devcontainer/tree/main/10-hardware-synchronisation/lock-free-queue-java
https://github.com/olivierpierre/comp35112-devcontainer/tree/main/10-hardware-synchronisation/lock-free-queue-c
https://www.baeldung.com/lock-free-programming

COMP35112 | Department of Computer Science

Summary

Synchronisation requires support from the hardware to ensure that
critical
code section are executed atomically
Atomic read-modify-write instructions can be used but they are costly
and hard to support on RISC CPUs
Next lecture: how to address these issues by breaking an atomic RMW
operation into two instructions working together: load-linked and
store-conditional

19 / 19

