MANCHESTER
1824
The Unive

COMP35112 Chip Multiprocessors

Hardware Support for
Synchronisation

Pierre Olivier

1/19

Implementing Synchronisation

e Shared-memory programming requires synchronisation mechanisms
to protect shared data

COMP35112 | Department of Computer Science 2/19

Implementing Synchronisation

e Shared-memory programming requires synchronisation mechanisms
to protect shared data
e Mechanisms can take several forms
o Butall are closely related and most can be built from the others

COMP35112 | Department of Computer Science 2/19

Implementing Synchronisation

e Shared-memory programming requires synchronisation mechanisms

to protect shared data
e Mechanisms can take several forms
o Butall are closely related and most can be built from the others

e Theirimplementation usually requires hardware support

COMP35112 | Department of Computer Science 2/19

Implementing Synchronisation

Shared-memory programming requires synchronisation mechanisms
to protect shared data
Mechanisms can take several forms
o Butall are closely related and most can be built from the others
Their implementation usually requires hardware support
We'll have a look at one of the simplest constructs
o Alock called binary semaphore, in a processor with a snoopy
cache
= Canbe held by at most 1 thread
= Waiting threads use busy-waiting

COMP35112 | Department of Computer Science 2/19

Example: Binary Semaphore

e [t'sasingleshared "boolean" variable S which valueis used to protect
a shared resource
o S == 0= resourcelsfree
o S == 1= resourceisinuse

COMP35112 | Department of Computer Science 3/19

Example: Binary Semaphore

e [t'sasingleshared "boolean" variable S which valueis used to protect
a shared resource
o S == O=resourceisfree
o S == 1= resourcelisinuse
e Semaphore operations (should be atomic)
o wailt(S):waituntilS !'= 1thensetS = 1(i.e.takethelock)
o signal(S):setS = 0 (i.e.releasethelock)

COMP35112 | Department of Computer Science 3/19

Semaphore Usage to Protect
Critical Sections

e Critical sections are the code sections where shared resources are

manipulated
Thread 1 Thread 2
wai t (S) wai t (S)
update shared data
si gnal (S)

update shared data
si gnal (S)

e Sshouldbeinitialised as @

COMP35112 | Department of Computer Science 4/19

Atomicity Needed

e How toimplementwait(S)?

COMP35112 | Department of Computer Science 5/19

Atomicity Needed

e How toimplementwait(S)?

// naive implementation in C:
while(S == 1);
S =1;

COMP35112 | Department of Computer Science 5/19

Atomicity Needed

e How toimplementwait(S)?

// naive implementation in C: // address of S in "%r2°
while(S == 1); loop: ldr %ri1, %r2
S =1; cmp %ri1, $1

beq loop

str $1, %r2

COMP35112 | Department of Computer Science 5/19

Atomicity Needed

e How toimplementwait(S)?

// naive implementation in C: // address of S in "%r2°
while(S == 1); loop: ldr %ri, %r2
S =1; cmp %ri1, $1

beq loop

str $1, %r2

e What if another thread changes
the value of S?

Thread 1 Thread 2
ldr %1, %2
cmp %1, $1 1dr W1, %2

beq | oop cmp %1, $1
str $1, %2 |beq | oop
str $1, %2

COMP35112 | Department of Computer Science 5/19

Atomicity Needed

e How toimplementwait(S)?

// naive implementation in C: // address of 'S in "%r2°
while(S == 1); loop: ldr %ri, %r2
S =1; cmp %ri1, $1

beq loop

str $1, %r2

e What if another thread changes

the value of S? Both threads got the lock!
Thread 1 Thread 2 The lock itself is a shared data
ldr %1, %2
cnp %1, $1 |1dr %1, %2 structure...
beq | oop cmp %1, $1
str $1, %2 |beq | oop
str $1, %2

COMP35112 | Department of Computer Science 5/19

Atomic Instructions

e \We need to ensure that the execution of wait() is "indivisible"
o |.e.it should be atomic: once a thread starts to execute wait() it
should first finish it before any other thread can start it

COMP35112 | Department of Computer Science 6/19

Atomic Instructions

e \We need to ensure that the execution of wait() is "indivisible"
o |.e.it should be atomic: once a thread starts to execute wait() it
should first finish it before any other thread can start it
e Requires special instructions to be supported in hardware: atomic
instructions
o Special CPU instructions that realise a few operations atomically
o Operations are generally a memory load, a comparison, and
possibly a memory write

COMP35112 | Department of Computer Science 6/19

Atomic Instructions

e \We need to ensure that the execution of wait() is "indivisible"
o |.e.it should be atomic: once a thread starts to execute wait() it
should first finish it before any other thread can start it
e Requires special instructions to be supported in hardware: atomic
instructions
o Special CPU instructions that realise a few operations atomically
o Operations are generally a memory load, a comparison, and
possibly a memory write
e Implementing synchronisation primitives like wait() with these
Instructions involves a compromise between complexity and
performance

COMP35112 | Department of Computer Science 6/19

Atomic Instructions

e \We need to ensure that the execution of wait() is "indivisible"
o |.e.it should be atomic: once a thread starts to execute wait() it
should first finish it before any other thread can start it
e Requires special instructions to be supported in hardware: atomic
instructions
o Special CPU instructions that realise a few operations atomically
o Operations are generally a memory load, a comparison, and
pOssIbly a memory write
e Implementing synchronisation primitives like wait() with these
Instructions involves a compromise between complexity and
performance
e Alsonote that variable S when accessed will be cached, possibly in
several core caches, and the desired atomic behaviour might require
coherence operations in the cache

Atomic Test-And-Set Instruction

e Simplesolutioninolder CPUs, e.g. Motorola 68K

tas %r2

e |[fmemory location addressed by %r2 contains 0, switch its contentto 1
and set the CPU "zero" flag, otherwise clear zero flag.

COMP35112 | Department of Computer Science 7/19

Atomic Test-And-Set Instruction

e Simplesolutioninolder CPUs, e.g. Motorola 68K

tas %r2

e |[fmemory location addressed by %r2 contains 0, switch its contentto 1
and set the CPU "zero" flag, otherwise clear zero flag.
 Instruction-level behaviour is atomic
o Cannot be interrupted
o No other core can modify what is pointed by %r2 in memory while
the tas runs

COMP35112 | Department of Computer Science 7/19

Atomic Test-And-Set Instruction

COMP35112 | Department of Computer Science 8/19

Atomic Test-And-Set Instruction

CPU Memory

. Ox42 »

tas %r2

COMP35112 | Department of Computer Science 8/19

Our Semaphore with tas

e Remember that for our semaphore:

o LockisfreewhenS ==
o LockistakenwhenS == 1

e How toimplementwait() and signal with test-and-set?

COMP35112 | Department of Computer Science 9/19

Our Semaphore with tas

e Remember that for our semaphore:

o LockisfreewhenS ==
o LockistakenwhenS ==

e How toimplementwait() and signal with test-and-set?

Wait operation (taking the lock): Signal operation (releasing the lock):
// Address of S in %r2 // We assume that basic store operations
/] Loops (i.e. wait) while [%r2] != 0 // are atomic
loop: tas %r2 // Address of S in %r2

bnz loop // branch if zero flag not set str $0, %r2

COMP35112 | Department of Computer Science 9/19

What About the Cache?

e Semaphore operation with test-and-set is reasonably obvious if Sis a
single shared variable in memory
e Just tasforwait() andstrfor signal() onthatsingle variable

COMP35112 | Department of Computer Science 10/ 19

What About the Cache?

e Semaphore operation with test-and-set is reasonably obvious if Sis a
single shared variable in memory
e Just tasforwait() andstrfor signal() onthatsingle variable
e tasisanatomic read-modify-write (RMW) instruction and as such it
IS expensive:
o May involve 2 memory accesses (R & W)
o Locks the access to memory from other processors to ensure
atomicity

COMP35112 | Department of Computer Science 10/ 19

What About the Cache?

e Semaphore operation with test-and-set is reasonably obvious if Sis a
single shared variable in memory
e Just tasforwait() andstrfor signal() onthatsingle variable
e tasisanatomic read-modify-write (RMW) instruction and as such it
IS expensive:
o May involve 2 memory accesses (R & W)
o Locks the access to memory from other processors to ensure
atomicity
o By definition Sis shared: thisis the fundamental purpose of a
semaphore
o Processors are therefore likely to end up with a copy of S in their
cache

COMP35112 | Department of Computer Science 10/ 19

Test-and-Set and the Cache

e Assume sharedvariable S inthe cache
e Only when a tas succeeds (reads O) it must thenwritea 1

COMP35112 | Department of Computer Science 11/19

Test-and-Set and the Cache

e Assume sharedvariable S inthe cache

e Only when a tas succeeds (reads O) it must thenwritea 1
o When tas starts, don't know if a write will be needed or not...
o ...ifitis, needtosendaninvalidate message to other cores

COMP35112 | Department of Computer Science 11/19

Test-and-Set and the Cache

e Assume sharedvariable S inthe cache
e Only when a tas succeeds (reads O) it must thenwritea 1
o When tas starts, don't know if a write will be needed or not...
o ...ifitis, needtosendaninvalidate message to other cores
o So the processor must 'lock' the snoopy bus for every
multiprocessor tas operation
= Cannot let any other core do awrite

COMP35112 | Department of Computer Science 11/19

Test-and-Set and the Cache

e Assume sharedvariable Sinthe cache
e Only when a tas succeeds (reads O) it must thenwritea 1
o When tas starts, don't know if a write will be needed or not...
o ...ifitis, needtosendaninvalidate message to other cores
o So the processor must 'lock' the snoopy bus for every
multiprocessor tas operation
= Cannot let any other core do awrite
s Butifitendsupreadinga'l' (lock not available), this locking of
the bus was wasted because the tas was read-only...

COMP35112 | Department of Computer Science 11/19

Test-and-Set and the Cache

o Assume one thread has the lock: S is busy
o Another wanting the semaphore will read this busy value and cache it
o [twillthensitinaloop continually executing a tas until S becomes free

COMP35112 | Department of Computer Science 12/19

Test-and-Set and the Cache

o Assume one thread has the lock: S is busy
o Another wanting the semaphore will read this busy value and cache it
o [twillthensitinaloop continually executing a tas until S becomes free
o All this time it will be wasting bus cycles
o Slowing down cache coherence traffic from other cores

COMP35112 | Department of Computer Science 12/19

Test-and-Set and the Cache

Assume one thread has the lock: Sis busy
Another wanting the semaphore will read this busy value and cache it
't will then sitin a loop continually executing a tas until S becomes free
o All this time it will be wasting bus cycles
o Slowing down cache coherence traffic from other cores
Can address that issue with a simple re-formulation of the wait
operation: test-and-test-and-set
o Triesto minimise the amount of costly test-and-set

COMP35112 | Department of Computer Science 12/19

Test-and-test-and-set

e How toimplementwait() with test-and-test-and-set?

e |n pseudo-code:

do {
while(test(S) == 1); // traditional 1ldr
} while (test-and-set(S));// tas

/1

COMP35112 | Department of Computer Science 13/19

Test-and-test-and-set

e How toimplementwait() with test-and-test-and-set?

e |n pseudo-code: e [nassembly:
do { loop: ldr %r1, %r2 /* address of S in %r2 */
while(test(S) == 1); // traditional 1ldr cmp %ri1, $1
} while (test-and-set(S));// tas beq loop
tas %r2
// bnz loop /* branch if %r2 !'= 0 */

COMP35112 | Department of Computer Science 13/19

Test-and-test-and-set

e How toimplementwait() with test-and-test-and-set?

e |n pseudo-code: e [nassembly:
do { loop: ldr %r1, %r2 /* address of S in %r2 */
while(test(S) == 1); // traditional 1ldr cmp %ri1, $1
} while (test-and-set(S));// tas beq loop
tas %r2
// bnz loop /* branch if %r2 !'= 0 */
o Key idea:

o Most of the time we busy wait with a standard ldr
o OnlyonceSisseen to be free, a (costly) tas is made

COMP35112 | Department of Computer Science 13/19

Other Synchronisation Primitives

e Other machine level atomic instructions:

COMP35112 | Department of Computer Science

Other Synchronisation Primitives

e Other machine level atomic instructions:
o fetch-and-add: returns the value of a memory location and
Increments it

// in pseudo-code
fetch_and_add(addr, incr) {
old val = *addr;
*addr += incr;
return old val;

}

COMP35112 | Department of Computer Science 14/19

Other Synchronisation Primitives

e Other machine level atomic instructions:
o fetch-and-add: returns the value of a memory location and

Increments it
o compare-and-swap: compares the value of a memory location

with avalue (in aregister) and swap in another value (in a register)
if they are equal

// in pseudo-code
compare_and_swap(addr, comp, new_val) {

if(*addr != comp)
return false;

*addr = new_val;
return true;

}

COMP35112 | Department of Computer Science 15/19

Other Synchronisation Primitives

e Other machine level atomic instructions:
o fetch-and-add: returns the value of a memory location and

Increments it
o compare-and-swap: compares the value of a memory location

with avalue (in aregister) and swap in another value (in a register)

if they are equal
e Allthese instructions are RMW with the need to lock the snoopy

bus during their execution

COMP35112 | Department of Computer Science 16/19

Other Synchronisation Primitives

e Other machine level atomic instructions:
o fetch-and-add: returns the value of a memory location and

Increments it
o compare-and-swap: compares the value of a memory location

with avalue (in aregister) and swap in another value (in a register)

if they are equal
e Allthese instructions are RMW with the need to lock the snoopy

bus during their execution
o Notreally desirable with all CPU designs:
o Doesn't fit well with simple RISC pipelines, where RMW is really a

CISC instruction requiring a memory load operation, a comparison,
and possibly a store operation

COMP35112 | Department of Computer Science 16/19

Lock-Free Data Structures

o Atomic instructions can be used for other goals than implementing
locks
Lock-Free data structures: data structures that can be accessed
concurrently without locks through the use of atomic instructions
o Lists, stacks, etc.
e They are generally hard to implement:
o Updating their state requires more than the single memory store
operation done by RMW instructions
o Hardto know when a member of the data structure can be freed on
languages without garbage collectors (e.g. C/C++)
e Benefits: they can be faster than lock-based data structures

COMP35112 | Department of Computer Science 17/ 19

Lock-Free Data Structures

o |Lock-free queue implementation examples:

o |nJava: https://github.com/olivierpierre/comp351712-
devcontainer/tree/main/10-hardware-synchronisation/lock-free-
queue-java

= Not too hard because Java has a GC, still not entirely trivial

o In C: https://github.com/olivierpierre/comp35112-
devcontainer/tree/main/10-hardware-synchronisation/lock-free-
gueue-c

= Abit convoluted/hacky
e More info: https://www.baeldung.com/lock-free-programming and
"The Art of Multiprocessor Programming" chapters 10 and 11

COMP35112 | Department of Computer Science 18/19

https://github.com/olivierpierre/comp35112-devcontainer/tree/main/10-hardware-synchronisation/lock-free-queue-java
https://github.com/olivierpierre/comp35112-devcontainer/tree/main/10-hardware-synchronisation/lock-free-queue-c
https://www.baeldung.com/lock-free-programming

Summary

e Synchronisation requires support from the hardware to ensure that
critical code section are executed atomically

o Atomic read-modify-write instructions can be used but they are costly
and hard to support on RISC CPUs

o Next lecture: how to address these issues by breaking an atomic RMW
operation into two instructions working together: /oad-/inked and
store-conditional

COMP35112 | Department of Computer Science 19/19

