
COMP35112 Chip Multiprocessors

More about Locks

Pierre Olivier

1 / 20

Dangers with LocksDangers with Locks

2 / 202 / 20

COMP35112 | Department of Computer Science

Dangers with Locks

3 / 20

COMP35112 | Department of Computer Science

09-more-about-locks/deadlock.c

Dangers with Locks
typedef struct {
 double balance;
 pthread_mutex_t lock;
} account;

void initialise_account(account *a, double balance) {
 a->balance = balance;
 pthread_mutex_init(&a->lock, NULL); // return value checks omitted for brevity
}

void transfer(account *from, account *to, double amount) {
 if(from == to) return; // can't take a standard lock twice, avoid account transfer to self

 pthread_mutex_lock(&from->lock);
 pthread_mutex_lock(&to->lock);

 if(from->balance >= amount) {
 from->balance -= amount;
 to->balance += amount;
 }

 pthread_mutex_unlock(&to->lock);
 pthread_mutex_unlock(&from->lock);
}

4 / 20

https://olivierpierre.github.io/comp35112/lectures/09-more-about-locks/src/deadlock.c
https://github.com/olivierpierre/comp35112-devcontainer

COMP35112 | Department of Computer Science

void transfer(account *from, account *to,
 double amount) {
 if(from == to) return;

 pthread_mutex_lock(&from->lock);
 pthread_mutex_lock(&to->lock);

 if(from->balance >= amount) {
 from->balance -= amount;
 to->balance += amount;
 }

 pthread_mutex_unlock(&to->lock);
 pthread_mutex_unlock(&from->lock);
}

Thread 1:
transfer(a, b)

Thread 2:
transfer(b, a)

lock(a)
lock(b)

Time

Try to lock(b),
it’s held by T2,
go to sleep

Try to lock(a),
it’s held by T1,
go to sleep

Deadlock!

Dangers with Locks

5 / 20

COMP35112 | Department of Computer Science

09-more-about-locks/deadlock-fixed.c

Dangers with Locks
typedef struct {
 int id; // unique integer id, used to sort accounts
 double balance;
 pthread_mutex_t lock;
} account;

void transfer(account *from, account *to, double amount) {
 if(from == to) return;
 pthread_mutex_t *lock1 = &from->lock, *lock2 = &to->lock;

 if(from->id < to->id) { // always lock the accounts in the same order
 lock1 = &to->lock;
 lock2 = &from->lock;
 }

 pthread_mutex_lock(lock1);
 pthread_mutex_lock(lock2);
 if(from->balance >= amount) {
 from->balance -= amount;
 to->balance += amount;
 }
 pthread_mutex_unlock(lock2);
 pthread_mutex_unlock(lock1);
}

6 / 20

https://olivierpierre.github.io/comp35112/lectures/09-more-about-locks/src/deadlock-fixed.c
https://github.com/olivierpierre/comp35112-devcontainer

COMP35112 | Department of Computer Science

Dangers with Locks

Lost wakeup issue
Example with bounded_buffer code from last lecture

7 / 20

COMP35112 | Department of Computer Science

Dangers with Locks

Lost wakeup issue
Example with bounded_buffer code from last lecture

A B

C D

8 / 20

COMP35112 | Department of Computer Science

Dangers with Locks

Lost wakeup issue
Example with bounded_buffer code from last lecture

A B

C D

9 / 20

COMP35112 | Department of Computer Science

Dangers with Locks

Lost wakeup issue
Example with bounded_buffer code from last lecture

A B

C D

10 / 20

COMP35112 | Department of Computer Science

Dangers with Locks

Lost wakeup issue
Example with bounded_buffer code from last lecture

A B

C D

11 / 20

COMP35112 | Department of Computer Science

Dangers with Locks

Lost wakeup issue
Example with bounded_buffer code from last lecture

A B

C D

12 / 20

COMP35112 | Department of Computer Science

Dangers with Locks

Lost wakeup issue
Example with bounded_buffer code from last lecture

A B

C D

13 / 20

COMP35112 | Department of Computer Science

Dangers with Locks

Lost wakeup issue
Example with bounded_buffer code from last lecture

Fix (here) would be to use pthread_cond_broadcast() instead of
pthread_cond_signal()

Wake up all threads (vs. a single thread) waiting on a condition
variable

14 / 20

Misc. Information about LocksMisc. Information about Locks

15 / 2015 / 20

COMP35112 | Department of Computer Science

/* Coarse-grained locking: */

lock();

/* access a mix of shared and unshared data */

unlock();

/* Fine-grained locking: */

lock();
/* access shared data */
unlock();
/* access non-shared data */
lock();
/* access shared data */
unlock();

Granularity

How big a chunk of code which depends on obtaining a lock should you
write?

Coarse- vs. fine- grained

16 / 20

COMP35112 | Department of Computer Science

void transfer(account *from, account *to,
 double amount) {
 /* no check if from == to */

 // BUGGY when from == to if lock is
 // not reentrant
 pthread_mutex_lock(from->lock);
 pthread_mutex_lock(to->lock);

 if(from->balance >= amount) {
 from->balance -= amount;
 to->balance += amount;
 }
 /* ... */
}

09-more-about-locks/non-reentrant.c

int main(int argc, char **argv) {
 account account1;
 pthread_t t1;

 initialize_account(&account1, 1, INIT_MONEY);

 /* transfer from account1 to account1 */
 worker w1 = {&account1, &account1,
 ITERATIONS};

 pthread_create(&t1, NULL, thread_fn,
 (void *)&w1);
 pthread_join(t1, NULL);

 return 0;
}

Reentrant Lock

By default, a thread locking a lock it already holds results in undefined
behaviour

17 / 20

https://olivierpierre.github.io/comp35112/lectures/09-more-about-locks/src/non-reentrant.c
https://github.com/olivierpierre/comp35112-devcontainer

COMP35112 | Department of Computer Science

09-more-about-locks/reentrant.c

Reentrant Lock

A reentrant lock can be taken by a thread that already holds it
Avoid a thread deadlocking with itself

// Version of the bank account program that allows self transfers
// (return value checks omitted for brevity)

void initialize_account(account *a, int id, double balance) {
 a->id = id;
 a->balance = balance;

 /* Declare the lock as reentrant */
 pthread_mutexattr_t attr;
 pthread_mutexattr_init(&attr);
 pthread_mutexattr_settype(&attr, PTHREAD_MUTEX_RECURSIVE);
 pthread_mutex_init(&a->lock, &attr);
}

]

18 / 20

https://olivierpierre.github.io/comp35112/lectures/09-more-about-locks/src/reentrant.c
https://github.com/olivierpierre/comp35112-devcontainer

COMP35112 | Department of Computer Science

Other Lock Types

Semaphores
Mutexes that can be hold by multiple threads
Useful to coordinate access to a fixed number of resources

Spinlocks
Threads attempting to hold an unavailable lock will busy-wait

As opposed to going to sleep for mutexes
Monopolises CPU, lower wakeup latency

Read-write locks
Allows concurrent reads and exclusive writes

For more information see the multithreaded programming guide:
https://bit.ly/3FGt3k2

19 / 20

https://bit.ly/3FGt3k2

COMP35112 | Department of Computer Science

Summary

Locks come with their own issues
Concurrency issues are hard to debug, it's important to get your
synchronisation strategy right from the beginning

Lock granularity and reentrancy
Other lock types: semaphores, spinlocks, read-write locks

Next lecture: hardware support for synchronisation

20 / 20

