
COMP35112 Chip Multiprocessors






Parallel Programming Using Shared
Memory

Pierre Olivier

1 / 41



ThreadsThreads

2 / 412 / 41



COMP35112 | Department of Computer Science

Processes

A program executing on the CPU runs as a process
With virtual memory, the process gets the illusion it has access to
100% of the memory

Address space

3 / 41



COMP35112 | Department of Computer Science

Processes

A program executing on the CPU runs as a process
With virtual memory, the process gets the illusion it has access to
100% of the memory

Address space

Two programs run in 2 different processes, i.e. 2 different address
spaces

Address space of process A Address space of process B

x y

@0x42 @0x42

4 / 41



COMP35112 | Department of Computer Science

Processes

A program executing on the CPU runs as a process
With virtual memory, the process gets the illusion it has access to
100% of the memory

Address space

Two programs run in 2 different processes, i.e. 2 different address
spaces

x y

@0x42 @0x42

Physical memory

Process A’s page table Process B’s page table

x y

5 / 41



COMP35112 | Department of Computer Science

Threads

A thread is a sequence of instructions executed on a CPU core
A process can consist of one or more threads
Each process in the system has an address space
All threads in the same process share the same address space

6 / 41



COMP35112 | Department of Computer Science

Threads

A thread is a sequence of instructions executed on a CPU core
A process can consist of one or more threads
Each process in the system has an address space
All threads in the same process share the same address space

Address space of process A

A’s
threads

7 / 41



COMP35112 | Department of Computer Science

Threads

A thread is a sequence of instructions executed on a CPU core
A process can consist of one or more threads
Each process in the system has an address space
All threads in the same process share the same address space

A’s
threads

B’s 
threads

x

@0x42

Address space of process A Address space of process B

8 / 41



COMP35112 | Department of Computer Science

Threads

A thread is a sequence of instructions executed on a CPU core
A process can consist of one or more threads
Each process in the system has an address space
All threads in the same process share the same address space

Threads communicate using shared memory

9 / 41



COMP35112 | Department of Computer Science

Threads

Can program with threads in:
C/C++/Fortran – using the POSIX threads (Pthread) library
Java
Many other languages: Python, C#, Haskell, Rust, etc.

10 / 41



COMP35112 | Department of Computer Science

Pthread stands for the POSIX
thread library
Expose a C/C++ API to create
and manage multiple threads
within a process
Standard program: OS creates
automatically a single thread

Main
thread

Single-threaded
program

Threads in C/C++ with Pthread

11 / 41



COMP35112 | Department of Computer Science

Use pthread_create() to
create and launch a thread

Indicate as parameters:
Which function the
thread should run
Optionally what should
be passed as parameter
to this function

Main
thread

Child
thread

pthread_create()

Multithreaded
program

Threads in C/C++ with Pthread

12 / 41



COMP35112 | Department of Computer Science

Use pthread_create() to
create and launch a thread

Indicate as parameters:
Which function the
thread should run
Optionally what should
be passed as parameter
to this function

pthread_exit() to have the
calling thread exit

Main
thread

Child
thread

pthread_create()

pthread_exit

Threads in C/C++ with Pthread

13 / 41



COMP35112 | Department of Computer Science

Pthread -- POSIX thread library
Use pthread_create() to
create and launch a thread

Indicate as parameters:
Which function the
thread should run
Optionally what should
be passed as parameter
to this function

pthread_exit() to have the
calling thread exit
pthread_join() to wait for
another thread to finish

Main
thread

Child
thread

pthread_create()

pthread_exit

pthread_join()

(waits)

Threads in C/C++ with Pthread

14 / 41



COMP35112 | Department of Computer Science

Threads in C/C++ with Pthread

A good chunk of this course, including labs 1 and 2, will focus on
shared
memory programming in C/C++ with pthreads
man pthread_* and Google “pthreads” for lots of documentation

In particular see the Oracle Multithreaded Programming Guide:
https://bit.ly/3FGt3k2

15 / 41

https://bit.ly/3FGt3k2


COMP35112 | Department of Computer Science

// Compile with:
// gcc pthread.c -o pthread -lpthread

#include <stdio.h>
#include <stdlib.h>
#include <pthread.h>

#define NOWORKERS 5

// Function executed by all threads
void *thread_fn(void *arg) {
    int id = (int)(long)arg;

    printf("Thread %d running\n", id);

    pthread_exit(NULL);  // exit

    // never reached
}

03-shared-memory-programming/pthread.c 

int main(void) {
  // Each thread is controlled through a
  // pthread_t data structure
  pthread_t workers[NOWORKERS];

  // Create and launch the threads
  for(int i=0; i<NOWORKERS; i++)
    if(pthread_create(&workers[i], NULL,
        thread_fn, (void *)(long)i)) {
      perror("pthread_create");
      return -1;
    }

  // Wait for threads to finish
  for (int i = 0; i < NOWORKERS; i++)
    if(pthread_join(workers[i], NULL)) {
      perror("pthread_join");
      return -1;
  }

  printf("All done\n");
}

Threads in C/C++ with Pthread

16 / 41

https://olivierpierre.github.io/comp35112/lectures/03-shared-memory-programming/src/pthread.c
https://github.com/olivierpierre/comp35112-devcontainer


COMP35112 | Department of Computer Science

Threads in C/C++ with Pthread

Main
thread Children

threads
pthread_create()
pthread_join()

pthread_exit()

17 / 41



COMP35112 | Department of Computer Science

Threads in Java

Two ways of defining a Thread
Class inherits from java.lang.Thread
Class implements java.lang.Runnable

Lets you inherit from something else than Thread

18 / 41



COMP35112 | Department of Computer Science

Threads in Java

Two ways of defining a Thread
Class inherits from java.lang.Thread
Class implements java.lang.Runnable

Lets you inherit from something else than Thread
In both cases, run() method defines what the thread does when it
starts
running
Thread.start() gets it going
Can use Thread.join() to wait for it to complete

18 / 41



COMP35112 | D t t f C t S i

03-shared-memory-programming/java-thread.java 

Threads in Java
class MyThread extends Thread {
    int id;
    MyThread(int id) { this.id = id; }
    public void run() { System.out.println("Thread " + id + " running"); }
}

class Demo {
    public static void main(String[] args) {
        int NOWORKERS = 5;
        MyThread[] threads = new MyThread[NOWORKERS];

        for (int i = 0; i < NOWORKERS; i++)
            threads[i] = new MyThread(i);
        for (int i = 0; i < NOWORKERS; i++)
            threads[i].start();

        for (int i = 0; i < NOWORKERS; i++)
            try {
                threads[i].join();
            } catch (InterruptedException e) { /* do nothing */ }
        System.out.println("All done");
    }
}
// compile and launch with:
//javac java-thread.java && java Demo

19 / 41

https://olivierpierre.github.io/comp35112/lectures/03-shared-memory-programming/src/java-thread.java
https://github.com/olivierpierre/comp35112-devcontainer


03-shared-memory-programming/java-runnable.java 

Threads in Java
class MyRunnable implements Runnable {
    int id;
    MyRunnable(int id) { this.id = id; }
    public void run() { System.out.println("Thread " + id + " running"); }
}

class Demo {
    public static void main(String[] args) {
        int NOWORKERS = 5;
        Thread[] threads = new Thread[NOWORKERS];
        for (int i = 0; i < NOWORKERS; i++) {
            MyRunnable r = new MyRunnable(i);
            threads[i] = new Thread(r);
        }
        for (int i = 0; i < NOWORKERS; i++)
            threads[i].start();

        for (int i = 0; i < NOWORKERS; i++)
            try {
                threads[i].join();
            } catch (InterruptedException e) { /* do nothing */ }
        System.out.println("All done");
    }
}
// compile and launch with:
// javac java-runnable.java && java Demo 20 / 41

https://olivierpierre.github.io/comp35112/lectures/03-shared-memory-programming/src/java-runnable.java
https://github.com/olivierpierre/comp35112-devcontainer


COMP35112 | Department of Computer Science

For both Java and C examples:

Thread 1 running
Thread 0 running
Thread 2 running
Thread 4 running
Thread 3 running
All done

No control over the order of
execution!

The OS scheduler decides,
it's nondeterministic

Examples Output

21 / 41



COMP35112 | Department of Computer Science

For both Java and C examples:

Thread 1 running
Thread 0 running
Thread 2 running
Thread 4 running
Thread 3 running
All done

No control over the order of
execution!

The OS scheduler decides,
it's nondeterministic

A possible scheduling scenario:

T0

T1

T2

T3

T4Core 1

Core 2

Time

printf

Examples Output

21 / 41



COMP35112 | Department of Computer Science

For both Java and C examples:

Thread 1 running
Thread 0 running
Thread 2 running
Thread 4 running
Thread 3 running
All done

No control over the order of
execution!

The OS scheduler decides,
it's nondeterministic

A possible scheduling scenario:

T0

T1

T2

T3

T4Core 1

Core 2

Time

printf

Another one on 1 core:

T1 T3T2 T4T0Core 1

Examples Output

21 / 41



Data ParallelismData Parallelism
Dividing Work between ThreadsDividing Work between Threads

22 / 4122 / 41



COMP35112 | Department of Computer Science

Data Parallelism

Simple form of parallelism commonly found in many applications
Common in computational science applications

Divide computation into (nearly) equal sized chunks
Works best when there are no data dependencies between chunks

23 / 41



COMP35112 | Department of Computer Science

Data Parallelism

Simple form of parallelism commonly found in many applications
Common in computational science applications

Divide computation into (nearly) equal sized chunks
Works best when there are no data dependencies between chunks

a1 a2 a3 a4 a5 a6 a7 a8

b1 b2 b3 b4 b5 b6 b7 b8

a1+b1 a2+b2 a3+b3 a4+b4 a5+b5 a6+b6 a7+b7 a8+b8

+

=

A

B

C

Exploited in multithreading but also at the instruction level in
vector/array (SIMD) processors: CPUs (SSE, AVX), and in GPGPUs

23 / 41



COMP35112 | Department of Computer Science

Data Parallelism Example

Matrix multiply of n x n matrices is a good example

24 / 41



COMP35112 | Department of Computer Science

Data Parallelism Example

Matrix multiply of n x n matrices is a good example

a b c x

y

z

r

x =

r = a * x + b * y + c * z

25 / 41



COMP35112 | Department of Computer Science

Data Parallelism Example

Matrix multiply of n x n matrices is a good example

n2 parallel threads (1 per result element)

t2 t2 t2 t2

t2

t2

t1 t2 t3

t4 t5 t6

t7 t8 t9

x =

26 / 41



COMP35112 | Department of Computer Science

Data Parallelism Example

Matrix multiply of n x n matrices is a good example

n2parallel threads (1 per result element)
n parallel threads (1 per row/column of result)

t1 t1 t1 t1

t1

t1

t1 t1 t1

t2 t2 t2

t3 t3 t3

x =

27 / 41



COMP35112 | Department of Computer Science

Data Parallelism Example

Matrix multiply of n x n matrices is a good example

n2parallel threads (1 per result element)
n parallel threads (1 per row/column of result)
p parallel threads, each computing q rows/columns of the result,
where pq = n

t1 t1 t1 t1

t1

t1

t1 t1 t1

t1 t1 t2

t2 t2 t2

x =

28 / 41



COMP35112 | Department of Computer Science

Data Parallelism Example

Matrix multiply of n x n matrices is a good example

n2 parallel threads (1 per result element)
n parallel threads (1 per row/column of result)
p parallel threads, each computing q rows/columns of the result,
where pq = n

Two important questions regarding the programmer's effort:
What is the best strategy according to the situation?

Does the programmer need to be an expert to make that choice?
How to indicate the chosen strategy in the code?

If we already have a sequential version of the program, how
much code refactoring & new code implementation is needed?

29 / 41



Implicit vs. Explicit ParallelismImplicit vs. Explicit Parallelism

30 / 4130 / 41



COMP35112 | Department of Computer Science

03-shared-memory-programming/matmult.c 

#define N 1000
int A[N][N]; int B[N][N]; int C[N][N];

int main(int argc, char **argv) {

  /* init matrices here */

  for(int i=0; i<N; i++)
    for(int j=0; j<N; j++) {
      C[i][j] = 0;
      for(int k=0; k<N; k++)
          C[i][j] += A[i][k] * B[k][j];
    }

    return 0;
}

t1 t1 t1 t1

t1

t1

t1 t1 t1

t2 t2 t2

t3 t3 t3

x =

Basic sequential code for matrix
multiplication

NxN Parallel Matrix Multiplication

31 / 41

https://olivierpierre.github.io/comp35112/lectures/03-shared-memory-programming/src/matmult.c
https://github.com/olivierpierre/comp35112-devcontainer


COMP35112 | Department of Computer Science

03-shared-memory-programming/openmp.c 

#include <omp.h>
#define N 1000
int A[N][N]; int B[N][N]; int C[N][N];

int main(int argc, char **argv) {

  /* init matrices here */

#pragma omp parallel
  {
    /* First loop parralelised */
    for(int i=0; i<N; i++)
      for(int j=0; j<N; j++) {
        C[i][j] = 0;
        for(int k=0; k<N; k++)
           C[i][j] += A[i][k] * B[k][j];
      }
  }

    return 0;
}

t1 t1 t1 t1

t1

t1

t1 t1 t1

t2 t2 t2

t3 t3 t3

x =

Automatic parallelisation using
OpenMP

Very low programmer effort
More on OpenMP later in the
course

NxN Parallel Matrix Multiplication

32 / 41

https://olivierpierre.github.io/comp35112/lectures/03-shared-memory-programming/src/openmp.c
https://github.com/olivierpierre/comp35112-devcontainer


COMP35112 | Department of Computer Science

Explicit vs. Implicit Parallelism

Explicit parallelism
The programmer explicitly spells out what should be done in
parallel/sequence
Code modifications needed if sequential program already available
Examples: using threads or other high level notations (e.g.
OpenMP)

33 / 41



COMP35112 | Department of Computer Science

Explicit vs. Implicit Parallelism

Explicit parallelism
The programmer explicitly spells out what should be done in
parallel/sequence
Code modifications needed if sequential program already available
Examples: using threads or other high level notations (e.g.
OpenMP)

Implicit parallelism
No effort from the programmer, system works out parallelism by
itself
No code modification over an already existing sequential program
Done for example by some languages able to make strong
assumptions about
data sharing (e.g. pure functions), or with ILP

33 / 41



COMP35112 | Department of Computer Science

Example Code for Implicit
Parallelism

Some languages (e.g. Matlab, C++ and Java - via libraries, Fortran after
f90)
allow expressions on arrays:

A = B + C

with no side effects:

A = f(B) + g(C)

or even:

p = h(f(A), g(B))

34 / 41



COMP35112 | Department of Computer Science

Automatic Parallelisation

In an ideal world, the compiler would take an ordinary sequential
program and
derive the parallelism automatically

35 / 41



COMP35112 | Department of Computer Science

Automatic Parallelisation

In an ideal world, the compiler would take an ordinary sequential
program and
derive the parallelism automatically

Manufacturers of pre-multicore parallel machines invested
considerably in
such technology
Can do quite well if the programs are simple enough but
dependency analysis
can be very hard
Must be conservative

If you cannot be certain that parallel version computes correct
result, can't parallelise

35 / 41



COMP35112 | Department of Computer Science

Example Problems for
Parallelisation

Can the compiler automatically parallelise the execution of these
loops'
iterations?

I.e. run all or some iterations in parallel

for (int i = 0 ; i < n-3 ; i++) {
  a[i] = a[i+3] + b[i] ;           // at iteration i, read dependency with index i+3
}

for (int i = 5 ; i < n ; i++) {
  a[i] += a[i-5] * 2 ;             // at iteration i, read dependency with index i-5
}

for (int i = 0 ; i < n ; i++) {
  a[i] = a[i + j] + 1 ;            // at iteration i, read dependency with index ???
}

36 / 41



COMP35112 | Department of Computer Science

for (int i=0; i<n-3; i++)
  a[i] = a[i+3] + b[i];

If we parallelise and iteration 3
runs before iteration 0 we break
the program
Positive offset: we read at each
iteration what was in the array
before the loop started
We never read a value
computed by the loop itself

i  = 0 a[ 0]  = a[ 3] + b[ 0]
i  = 1 a[ 1]  = a[ 4]  + b[ 1]
i  = 2 a[ 2]  = a[ 5]  + b[ 2]
i  = 3 a[ 3] = a[ 6]  + b[ 3]
i  = 4 a[ 4]  = a[ 7]  + b[ 4]

etc.

Automatic Parallelisation

37 / 41



COMP35112 | Department of Computer Science

for (int i=0; i<n-3; i++)
  a[i] = a[i+3] + b[i];

If we parallelise and iteration 3
runs before iteration 0 we break
the program
Positive offset: we read at each
iteration what was in the array
before the loop started
We never read a value
computed by the loop itself

i  = 0 a[ 0]  = a[ 3] + b[ 0]
i  = 1 a[ 1]  = a[ 4]  + b[ 1]
i  = 2 a[ 2]  = a[ 5]  + b[ 2]
i  = 3 a[ 3] = a[ 6]  + b[ 3]
i  = 4 a[ 4]  = a[ 7]  + b[ 4]

etc.

Automatic Parallelisation

Can parallelise by making a new
version of array a

parrallel_for(int i=0; i<n-3; i++)
    new_a[i] = a[i+3] + b[i];
a = new_a;

37 / 41



COMP35112 | Department of Computer Science

for (int i = 5 ; i < n ; i++) {
      a[i] += a[i-5] * 2 ;
}

Previous trick does not work
here: this time we read values
computed by the loop itself
At each iteration i we read what
was computed by the loop at
iteration i-5

i  = 5 a[ 5]  = a[ 5] + a[ 0] *2
i  = 6 a[ 6]  = a[ 6]  + a[ 1] *2
i  = 7 a[ 7]  = a[ 7]  + a[ 2] *2
i  = 8 a[ 8]  = a[ 8]  + a[ 3] *2
i  = 9 a[ 9]  = a[ 9]  + a[ 4] *2
i  = 10 a[ 10]  = a[ 10]  + a[ 5] *2
i  = 11 a[ 11]  = a[ 11]  + a[ 6] *2
i  = 12 a[ 12]  = a[ 12]  + a[ 7] *2
i  = 13 a[ 13]  = a[ 13]  + a[ 8] *2
i  = 14 a[ 14]  = a[ 14]  + a[ 9] *2
i  = 15 a[ 15]  = a[ 15]  + a[ 10] *2

etc.

Automatic Parallelisation

38 / 41



COMP35112 | Department of Computer Science

for (int i = 5 ; i < n ; i++) {
      a[i] += a[i-5] * 2 ;
}

Previous trick does not work
here: this time we read values
computed by the loop itself
At each iteration i we read what
was computed by the loop at
iteration i-5
Solution: limit parallelism to 5

i  = 5 a[ 5]  = a[ 5] + a[ 0] *2
i  = 6 a[ 6]  = a[ 6]  + a[ 1] *2
i  = 7 a[ 7]  = a[ 7]  + a[ 2] *2
i  = 8 a[ 8]  = a[ 8]  + a[ 3] *2
i  = 9 a[ 9]  = a[ 9]  + a[ 4] *2
i  = 10 a[ 10]  = a[ 10]  + a[ 5] *2
i  = 11 a[ 11]  = a[ 11]  + a[ 6] *2
i  = 12 a[ 12]  = a[ 12]  + a[ 7] *2
i  = 13 a[ 13]  = a[ 13]  + a[ 8] *2
i  = 14 a[ 14]  = a[ 14]  + a[ 9] *2
i  = 15 a[ 15]  = a[ 15]  + a[ 10] *2

etc.

Automatic Parallelisation

39 / 41



COMP35112 | Department of Computer Science

Shared Memory

For this lecture we assumed that threads share memory
I.e. they all have access to a common address space
Multiple threads can read and write in the same memory location
(variable,
buffer, etc.) through

Global variable
Pointers and references

No shared memory?
Need to communicate via message passing
Close to a distributed system
We'll talk briefly about MPI (Message Passing Interface) later in
the course unit

40 / 41



COMP35112 | Department of Computer Science

Summary and Next Lecture

In shared memory systems, a parallel program can use threads
Threads communicate implicitly by reading and writing to a
common address
space

A simple form of parallelism: data parallelism
Apply similar operations on chunks of a data set
Efficient when there is no data dependency

Automatic parallelisation can be limited by such dependencies
Shared memory is a practical form of implicit communication

It's great that multicore today share memory right?
Next lecture will discuss why this isn’t as simple as it sounds!

41 / 41


