MANCHESTER
1824

The University of Manchester

COMP35112 Chip Multiprocessors

Synchronisation in Parallel
Programming - Locks and Barriers

Pierre Olivier

1/42

Synchronisation Mechanisms

e |namultithreaded program, threads rarely execute completely
independently:
o |n many scenarios they need to wait for each other and to
communicate by accessing shared data

COMP35112 | Department of Computer Science 2/42

Synchronisation Mechanisms

e |namultithreaded program, threads rarely execute completely
independently:
o |n many scenarios they need to wait for each other and to
communicate by accessing shared data
o Brings the need for synchronisation mechanisms

COMP35112 | Department of Computer Science 2/42

Synchronisation Mechanisms

e |namultithreaded program, threads rarely execute completely
independently:
o |n many scenarios they need to wait for each other and to
communicate by accessing shared data
o Brings the need for synchronisation mechanisms
e [nthislecture we will cover:
o Barriers: simple mechanism letting threads wait for each other at
a given point in their execution
o Locks allowing threads to safely access shared data
e |nthe next video you will see:
o Condition variables for event signalling between threads

COMP35112 | Department of Computer Science 2/42

Barriers

3/42

Barriers

Time

Thread 1 _ Waiting
Thread2 [Running | Waiting
Thread3 [Running [Waiting]
Thread 4 _ _

COMP35112 | Department of Computer Science 4/42

Barriers

Time

Thread 1 _ Waiting
Thread2 [Running | Waiting
Thread3 [Running [Waiting]
Thread 4 _ _

e Abarrier is where a number of threads "meet up"
o When all threads have reached it, they can all proceed

COMP35112 | Department of Computer Science 5/42

Barriers

Step 1

Step 2

Thread 1 [Runsstepi | Waiting

Thread 2 [Runsstep® | Waiting

Thread3 [Runsstep® [Waiting

Thread 4

>

(o]

e Very natural when threads are used to implement data parallelism
o Want the whole answer from this step before proceeding to the

next step

COMP35112 | Department of Computer Science

Barriers

Iterations 0-3 Iterations 4-7 Iterations 8-11
Thread 1 Iteration O lteration 4 [teration 8
Thread 2 | lteration 1 [teration 5 [teration 9
Thread 3 Iteration 2 Iteration 6 Iteration 10
Thread 4 [teration 3 [teration 7 Iteration 11
Barrier Barrier

e Very natural when threads are used to implement data parallelism

o Want the whole answer from this step before proceeding to the
next step

e \Would also use when data dependence limits loop parallelisation
o Many barriers primitives allow multiple use

COMP35112 | Department of Computer Science 7/42

Barrier Example

We'll write a small program with 2 threads executing as follows:

Thread 1| Running Waiting Running Waiting
Thread 2 Running Running
Time >

e Forcethread 2 to execute for a longer time than thread 1 at each
iteration

COMP35112 | Department of Computer Science

Barrier Example

We'll write a small program with 2 threads executing as follows:

Before barrier: print
thread n reached barrier

Thread 1| Running Waiting Running Waiting
Thread 2 Running Running
Time >

e Forcethread 2 to execute for a longer time than thread 1 at each
iteration

COMP35112 | Department of Computer Science

Barrier Example

We'll write a small program with 2 threads executing as follows:

Before barrier: print

thread n reached barrier -

Thread 1| Running Waiting IRunning Waiting
Thread 2 Running I Running
Time >

e Forcethread 2 to execute for a much longer time than thread 1 at
each iteration

COMP35112 | Department of Computer Science

Barrier Example

#define ITERATIONS 10 void *thread_fn(void *data) {
worker *arg = (worker *)data;
typedef struct { int i1d = arg->id;
int id; int iteration = 0;
int spin_amount;
pthread_barrier_t *barrier; while(iteration != ITERATIONS) {
} worker;

/* busy loop to simulate activity */
for(int 1=0; i<arg->spin_amount; i++);

printf("Thread %d reached barrier\n", id);

int r = pthread_barrier_wait(arg->barrier);
1f(r!=PTHREAD_BARRIER_SERIAL_THREAD && r) {
perror("pthread_barrier_wait");
exit(-1);
}

printf("Thread %d passed barrier\n", id);
iteration++;

pthread_exit(NULL);
¥ 08a-locks-barriers/barrierJ:C)

COMP35112 | Department of Computer Science 11 /42

https://olivierpierre.github.io/comp35112/lectures/08a-locks-barriers/src/barrier.c
https://github.com/olivierpierre/comp35112-devcontainer

Barrier Example

#include <err.h> // for errx

[* ... */

#define T1_SPIN_AMOUNT 200000000

#define T2_SPIN _AMOUNT (10 * T1_SPIN_AMOUNT)

int main(int argc, char **argv) {
pthread_t t1, t2;
pthread_barrier_t barrier;

worker wi
worker w2

{1, T1_SPIN_AMOUNT, &barrier};
{2, T2_SPIN_AMOUNT, &barrier};

if(pthread_barrier_1init(&barrier, NULL, 2))
errx(-1, ("pthread barrier_init")); // equivalent of perror(msg); exit(-1);

if(pthread_create(&t1, NULL, thread_fn, (void *)&wl) ||
pthread create(&t2, NULL, thread_fn, (void *)&w2))
errx(-1, "pthread create");

if(pthread_join(t1l, NULL) || pthread_join(t2, NULL))
errx(-1, "phread_join");

return 0;
08a-locks-barriers/barrier.cC)

COMP35112 | Department of Computer Science 12/42

https://olivierpierre.github.io/comp35112/lectures/08a-locks-barriers/src/barrier.c
https://github.com/olivierpierre/comp35112-devcontainer

Locks

13/42

Locks: Motivational Example 1

e Locks protect shared data from concurrent access
o Why is it needed?
e Motivational example: withdrawing cash at a cash machine

COMP35112 | Department of Computer Science 14 /42

Locks: Motivational Example 1

e Locks protect shared data from concurrent access
o Why is it needed?

e Motivational example: withdrawing cash at a cash machine

Cash machine pseudo code for the withdrawal operation:

int withdrawal = get_withdrawal_amount(); /* amount the user is asking to withdraw */
int total = get total from_account(); /* total funds in user account */

/* check whether the user has enough funds in her account */
if(total < withdrawal)
abort("Not enough money!");

/* The user has enough money, deduct the withdrawal amount from here total */
total = total - withdrawal;
update_total funds(total);

/* give the money to the user */
spit_out_money(withdrawal);

COMP35112 | Department of Computer Science 14 /42

Locks: Motivational Example 1

int withdrawal = get_withdrawal _amount();
int total = get_total from_account();

if(total < withdrawal)
abort("Not enough money!");

total = total - withdrawal;
update_total funds(total);

spit_out_money(withdrawal);

COMP35112 | Department of Computer Science 15/42

Locks: Motivational Example 1

int withdrawal = get_withdrawal_amount(); e Assume 2 transactions are

int total = get_total from_account(); .
happening nearly at the same
if(total < withdrawal)

abort("Not enough money!"); time
total = total - withdrawal; O Eg shared credit card
update_total funds(total); account
spit_out_money(withdrawal); ° ASSUI’T]E' total -= 105

withdrawall == 100,

withdrawal2 == 10

o At least one should fail as
(100+10) > 105

COMP35112 | Department of Computer Science 16/42

Locks: Motivational Example 1

int withdrawal = get_withdrawal_amount(); e total == 105 withdrawall == 100,
int total = get_total_from_account(); withdrawal2 == 10
if(total < withdrawal) e A possible scenario:

abort("Not enough money!"); 1. Threads get total in local variable,
total = total - withdrawal; both get 105
update_total_funds(total); 2. Threads check that 100 < 105 and
spit_out_money(withdrawal); 10 < 105

= All good

3. Thread 1 updates:
m total = 105 - 100 = 5
m ypdate total funds(5)
4. Slightly later thread 2 updates:
m total = 105 - 10 = 95
m ypdate_total funds(95)

COMP35112 | Department of Computer Science 17/42

Locks: Motivational Example 1

int withdrawal = get_withdrawal_amount(); e total == 105,withdrawall == 100,
int total = get_total_from_account(); withdrawal2 == 10
if(total < withdrawal) e Apossible scenario:
abort("Not enough money!"); 1. Threads get total in local variable,
total = total - withdrawal; both get 105
Upeie jepial el st 2. Threads check that 100 < 105 and
spit_out_money(withdrawal); 10 < 105
= All good
Total withdrawal: 110, and there is 3. Thread 1 updates:
95 left on the account! = total = 105 - 100 = 3
-) m ypdate total funds(5)
Free money & 4. Slightly later thread 2 updates:
m total = 105 - 10 = 95
e Race condition: concurrent = update_total_funds(95)

operations on shared state
should not happen at the same time

Locks: Motivational Example 2

e Consider the 1++ statement
o Could translate into machine code as:

1. load the current value of i1 from memory into a register
2. add one to the value stored into the register
3. store from the register to memory the new value of i

COMP35112 | Department of Computer Science 18/42

Locks: Motivational Example 2

e Consider the 1++ statement

o Couldtranslate into machine code as:

1. load the current value of i1 from memory into a register

2. add one to the value stored into the register

3. store from the register to memory the new value of i

When 2 threads execute i++, we
expect i to end up being
incremented twice. A possible
scenario:

COMP35112 | Department of Computer Science 19/42

Thread 1 Thread 2
load i (7)
increnent i (7-8)
store i (8§
load i (8)

increnent i (89)

store i (9

Locks: Motivational Example 2

e Consider the 1++ statement
o Could translate into machine code as:

1. load the current value of i1 from memory into a register
2. add one to the value stored into the register
3. store from the register to memory the new value of i

. . Thread 1 Thread 2
Another possible scenario: race load i (7) load i (7)
condition increnent i (7-8)

increnent i (7—8)

e Need locks to serialise accessto |store i (8 .
shared data, I.e. to ensure that - store i (8)
critical sections are executed
atomically

COMP35112 | Department of Computer Science 20/42

Critical Sections

e Bits of code in our program int withdrawal = get_withdrawal_amount();
. int total = get_total_from_account();
where shared data is if(total < withdrawal)
abort("Not enough money!");
accessed/updated are called total -= withdrawal;
og e . update_total_funds(total);
Crltlcal SeCtlonS spit_out_money(withdrawal);

COMP35112 | Department of Computer Science 21/42

Critical Sections

e Bitsof codeinour program int withdrawal = get_withdrawal_amount();
. int total = get _total from_account();
where shared datais if(total < withdrawal)
abort("Not enough money!");
accessed/updated are called total -= withdrawal;
oy e o update_total funds(total);
Crltlcal SeCtlonS spit_out_money(withdrawal);

e Lock: synchronisation primitive
enforcing limits on the execution of a critical section:
o Serialisation: amount of threads that can concurrently execute it

(generally 1)
o Atomicity: when a thread T starts to run a critical section S, T must
first finish S before another thread canenter S

COMP35112 | Department of Computer Science 21/42

Locks

e Fach piece of shared data is protected by a dedicated lock
e Critical section relevant to this piece of shared data are surrounded
by lock and unlock operations on that lock:

int withdrawal = get_withdrawal_amount();
lock(account_lock);
int total = get total from_account();
if(total < withdrawal)

abort("Not enough money!");
total -= withdrawal;
update_total funds(total);
unlock(account_lock);

spit_out_money(withdrawal);

COMP35112 | Department of Computer Science 22 /42

Locks

e Critical sections can be protected with locks:
o Only one thread can hold a given lock at a time (serialisation)
o Holding the lock lets the thread enter and execute the
corresponding critical section in its entirety before another
thread can get the lock and run the critical section (atomicity)

COMP35112 | Department of Computer Science 23/42

Locks

e Critical sections can be protected with locks:
o Only one thread can hold a given lock at a time (serialisation)
o Holding the lock lets the thread enter and execute the
corresponding critical section in its entirety before another
thread can get the lock and run the critical section (atomicity)
e Athread wishing to enter the critical section tries to take the lock:
o Athread attempting to take a free lock will get it
o |falockisnot free the thread needs to wait until the lock is
released by its holder

COMP35112 | Department of Computer Science 23/42

Locks

e Critical sections can be protected with locks:
o Only one thread can hold a given lock at a time (serialisation)
o Holding the lock lets the thread enter and execute the
corresponding critical section in its entirety before another
thread can get the lock and run the critical section (atomicity)

Time >

D

Thread 1 | Running

Thread 2 | Running

COMP35112 | Department of Computer Science 24 /42

Locks

e Critical sections can be protected with locks:
o Only one thread can hold a given lock at a time (serialisation)
o Holding the lock lets the thread enter and execute the
corresponding critical section in its entirety before another
thread can get the lock and run the critical section (atomicity)

Time >

Thread 1 | Running Critical section
try locks got lock

U
try lock lock already taken

Thread 2 | Running Waiting

COMP35112 | Department of Computer Science 25/42

Locks

e Critical sections can be protected with locks:
o Only one thread can hold a given lock at a time (serialisation)
o Holding the lock lets the thread enter and execute the
corresponding critical section in its entirety before another
thread can get the lock and run the critical section (atomicity)

Time >

Thread 1 | Running Critical section Running
release lock

try lock got lock
Thread 2 | Running Waiting Critical section

COMP35112 | Department of Computer Science 26/42

Locks

e Critical sections can be protected with locks:
o Only one thread can hold a given lock at a time (serialisation)
o Holding the lock lets the thread enter and execute the
corresponding critical section in its entirety before another
thread can get the lock and run the critical section (atomicity)

Time >
Thread 1 | Running Critical section
release lock
Thread 2 | Running Waiting Critical section

COMP35112 | Department of Computer Science 27/42

Pthreads Mutexes

o Mutexes: mutual exclusion locks

#include <pthread.h>

pthread_mutex_t mutex;

void my_thread_function() {
pthread mutex_ lock(&mutex);
/* critical section here */

pthread _mutex_unlock(&mutex);

COMP35112 | Department of Computer Science 28 /42

Pthreads Mutexes

o Mutexes: mutual exclusion locks

#include <pthread.h>

pthread_mutex_t mutex;

void my_thread_function() {
pthread mutex_ lock(&mutex);
/* critical section here */

pthread _mutex_unlock(&mutex);

Important:
in the next examples we omit pthread functions return code checking
for the sake of brevity, but note that almost all of them can fail!

COMP35112 | Department of Computer Science 28/42

Lock Usage Example

e Bounded buffer: circular fixed-size FIFO producer-consumer buffer

5 \ extract

om0 =

COMP35112 | Department of Computer Science

Lock Usage Example

typedef struct {

int *buffer; // the buffer

int max_elements; /] size of the buffer

int in_index; // index of the next free slot

int out_index; // index of the next message to extract
int count; // number of used slots

pthread_mutex_t lock; // lock protecting the buffer
} bounded buffer;

int init_bounded_buffer(bounded buffer *b, int size) {
b->buffer = malloc(size * sizeof(int));
if(!b->buffer)
return -1;

b->max_elements = size;

b->in_index = 0;

b->out_index = 0;

b->count = 0;

pthread_mutex_init(&b->lock, NULL); // mutex initialisation
return 0;

}

void destroy_bounded_buffer(bounded_buffer *b) {
free(b->buffer);

¥ 08a-locks-barriersllock.ccj

COMP35112 | Department of Computer Science 30 /42

https://olivierpierre.github.io/comp35112/lectures/08a-locks-barriers/src/lock.c
https://github.com/olivierpierre/comp35112-devcontainer

Lock Usage Example (continued)

void deposit(bounded buffer *b, int message) {
pthread_mutex_lock(&b->lock);

int full = (b->count == b->max_elements);

while(full) {
// buffer is full, can't deposit! Release the lock and wait a bit
// to give another thread a chance to extract an element
pthread_mutex_unlock(&b->lock);
usleep(100);
pthread mutex_lock(&b->1lock);

// is the buffer still full?
full = (b->count == b->max_elements);

}

// perform deposit

b->buffer[b->in_1index] = message;

b->in_index = (b->in_index + 1) % b->max_elements;
b->count++;

pthread_mutex_unlock(&b->1lock);
¥ 08a-locks-barriers/lock.c®

COMP35112 | Department of Computer Science 31/42

https://olivierpierre.github.io/comp35112/lectures/08a-locks-barriers/src/lock.c
https://github.com/olivierpierre/comp35112-devcontainer

Lock Usage Example (continued)

int extract(bounded_buffer *b) {
pthread_mutex_lock(&b->lock);

int empty = !(b->count);

while(empty) {
// buffer is empty, nothing to extract! Release the lock and wait a bit
// to give another thread a chance to deposit an element
pthread_mutex_unlock(&b->lock);
usleep(100);
pthread mutex_lock(&b->1lock);

// is the buffer still empty?
empty = !(b->count);
}

// perform extract

int message = b->buffer[b->out_1index];

b->out_index = (b->out_index + 1) % b->max_elements;
b->count--;

pthread_mutex_unlock(&b->1lock);
return message;

¥ 08a-locks-barriers/lock.c

COMP35112 | Department of Computer Science 32/42

https://olivierpierre.github.io/comp35112/lectures/08a-locks-barriers/src/lock.c
https://github.com/olivierpierre/comp35112-devcontainer

Lock Usage Example (continued)

typedef struct { #define BUFFER_SIZE 100
int iterations; int main(int argc, char **argv) {
bounded_buffer *bb; bounded_buffer b;
} worker; pthread_t t1, t2;
void *deposit_thread_fn(void *data) { if(init_bounded buffer(&b, BUFFER_SIZE)) {
worker *w = (worker *)data; /* error */
for(int 1=0; i<w->iterations; i++) { }
deposit(w->bb, 1);
printf("[deposit thread] put %d\n", 1); worker wl = {BUFFER_SIZE*2, &b};

worker w2 = {BUFFER_SIZE*2, &b};
pthread exit(NULL);
} pthread create(&t1, NULL, deposit_thread fn,
(void *)&wl);
void *extract_thread_fn(void *data) { pthread create(&t2, NULL, extract_thread_fn,
worker *w = (worker *)data; (void *)&w2);
for(int 1=0; i<w->iterations; i++) {
int x = extract(w->bb); pthread_join(t1l, NULL);
printf("[extract thread] got %d\n", x); pthread_join(t2, NULL);
destroy bounded buffer(&b);
pthread exit(NULL); return 0;
¥ ¥ 08a-locks-barriers/lock.c®)

COMP35112 | Department of Computer Science 33/42

https://olivierpierre.github.io/comp35112/lectures/08a-locks-barriers/src/lock.c
https://github.com/olivierpierre/comp35112-devcontainer

Omit the Locks and Madness Ensues

e Could have two threads in
deposit() both writing to the
same element of buffer

o Onevalueislost
e Couldtheneither increment
in_1index
o Once: whole call of
deposit() lost
o Twice: spurious (old) value
apparently deposited

COMP35112 | Department of Computer Science 34/42

Omit the Locks and Madness Ensues

e Could have two threadsin 3 49
deposit() both writing to the \
same element of buffer
43
o Onevalueis lost ;_/ 4
e Couldtheneither increment in_index
in_1index

o Once: whole call of
deposit() lost

o Twice: spurious (old) value
apparently deposited

COMP35112 | Department of Computer Science

Omit the Locks and Madness Ensues

e Could have two threadsin 3
deposit() both writing to the \
same element of buffer 42
43
o Onevalueis lost ;_/ 4
e Couldtheneither increment in_index
in_1index

o Once: whole call of
deposit() lost

o Twice: spurious (old) value
apparently deposited

COMP35112 | Department of Computer Science

Omit the Locks and Madness Ensues

e Could have two threadsin 3 lost!
deposit() both writing to the \ 42 lost!
same element of buffer 43

o Onevalueis lost ;_/ 4

e Couldtheneither increment in_index

in_1index

o Once: whole call of
deposit() lost

o Twice: spurious (old) value
apparently deposited

COMP35112 | Department of Computer Science

Omit the Locks and Madness Ensues

e Could have two threadsin 3 lost!
deposit() both writing to the \ 42 lost!
same element of buffer 43

o Onevalueis lost ;_/ 7\

e Couldtheneither increment in_index

in_1index

o Once: whole call of
deposit() lost

o Twice: spurious (old) value
apparently deposited

COMP35112 | Department of Computer Science

Omit the Locks and Madness Ensues

e Could have two threadsin 3
deposit() both writing to the \
same element of buffer 43] ?
o Onevalueis lost ;_/ I\
e Couldtheneither increment in_index
in_1index

o Once: whole call of
deposit() lost

o Twice: spurious (old) value
apparently deposited

COMP35112 | Department of Computer Science

Omit the Locks and Madness Ensues

e Similarly for two calls of extract()
e Couldhave twothreadsin e Even problems between a call of
deposit() bothwritingtothe deposit() and one of extract(),e.g.
same element of buffer both change count
o Onevalueislost
e Couldtheneither increment
in_1index
o Once: whole call of
deposit() lost
o Twice: spurious (old) value
apparently deposited

COMP35112 | Department of Computer Science 40/42

Omit the Locks and Madness Ensues

| e Similarly for two calls of extract()
« Could have twothreadsin e Even problems between a call of
deposit() bothwritingtothe deposit() and one of extract(), e.g.

same element of buffer both change count
o Onevalue s lost
e Couldthen either increment Concurrency issues can be
in_1index extremelyhard to debugin
o Once: whole call of medium/large scale programs

deposit() lost
o Twice: spurious (old) value
apparently deposited

COMP35112 | Department of Computer Science 40/42

Omit the Locks and ...

/* BUGGY version of deposit, without locks */
void deposit(bounded buffer *b, int message) {

while (b->count == b->max_elements);

b->buffer[b->in_1index] = message;
b->in_index = (b->in_index + 1) % b->max_elements;
b->count++;

}

/* BUGGY version of extract, without locks */
int extract(bounded buffer *b) {

while (!(b->count));
int message = b->buffer[b->out_index];
b->out_index = (b->out_index + 1) % b->max_elements;

b->count--;

return message;

08a-locks-barriers/10ck-buggy.cC)

COMP35112 | Department of Computer Science 41/42

https://olivierpierre.github.io/comp35112/lectures/08a-locks-barriers/src/lock-buggy.c
https://github.com/olivierpierre/comp35112-devcontainer

Summary

e [hread need to sync up and access shared data
o Need for synchronisation mechanisms such as locks and barriers
e Parts of the program where a shared resource may be accessed by
multiple threads at the same time, including at least a write access are
critical sections
o Locks enforce serial and atomic execution of these critical sections
to avoid race conditions
e Next lecture: condition variables, another mechanism useful for
event signalling

COMP35112 | Department of Computer Science 42 /42

