MANCHESTER
1824

The University of Manchester

COMP35112 Chip Multiprocessors

Cache Coherency in
Multiprocessors

Pierre Olivier

1/26

< 1 ST PR IIIIIII-LL

Wednesday 8th March (International Women's Day)
7-3pm
Kilburn Atlas/Kilburn_ Mercury

Refreshments will be provided!

This is an informal social event open to all female and gender
minority students and staff in the School of Engineering, as an
opportunity to meet new people

B
A

e k"
s

o T T U A TR

Cache Coherency in
Multiprocessors

e Cache coherency: avoid having
multiple different copies of the
same data indifferent caches of A reads x then
a shared memory 1) updates it
multiprocessor

Later, B reads x 9
and gets the old version

COMP35112 | Department of Computer Science 3/26

Cache Coherency in

Multiprocessors

e Cache coherency: avoid having
multiple different copies of the
same data in different caches of
a shared memory
multiprocessor

e Need cache to cache

A reads x then

o updates it

CPUA CPUB
x—X
Later, B reads x 9
and gets the old version
HRam

communication for performance to avoid involving the slow memory

COMP35112 | Department of Computer Science

Coping with Multiple Cores

e Abusisattachedtoevery cache
Bus snooping: hardware attached to each core’s cache
o Observes all transactions on the bus
o Able to modify the cache independently of the core
e Thishardware cantake action on seeing pertinent transactions on the
bus
e Another way tolook at it:
a cache can send/receive messages to/from other caches

—

COMP35112 | Department of Computer Science

Cache States, MSI Protocol

Cache has 2 control bits for each line it contains, indicating its state

COMP35112 | Department of Computer Science 5/26

Cache States, MSI Protocol

Cache has 2 control bits for each line it contains, indicating its state

COMP35112 | Department of Computer Science 5/26

Cache States, MSI Protocol

Cache has 2 control bits for each line it contains, indicating its state

e Modified state: the cache lineis valid and
has been written to but the latest values
have not been updated in memory yet

o Alinecanbeinthe modified statein at
most 1 core

Modified

COMP35112 | Department of Computer Science

Cache States, MSI Protocol

Cache has 2 control bits for each line it contains, indicating its state

e Invalid: there may be an address match on
this line but the data is not valid
o We must go to memory and fetch it or get
it from another cache

Invalid

COMP35112 | Department of Computer Science

Cache States, MSI Protocol

Cache has 2 control bits for each line it contains, indicating its state

e Shared: implicit 3rd state, not invalid and not
modified
o Avalid cache entry exists and the line has

the same values as main memory
o Several caches can havethesamelinein

that state Shared

COMP35112 | Department of Computer Science

Cache States, MSI Protocol

Cache has 2 control bits for each line it contains, indicating its state

e Shared: implicit 3rd state, not invalid and not
modified
o Avalid cache entry exists and the line has

the same values as main memory
o Several caches can havethesamelinein

that state Shared

Modified/Shared/Invalid states and the
transitions we'll describe next define the MSI protocol

COMP35112 | Department of Computer Science

Possible States for a Dual-Core CPU

(a) Modified Invalid (b) Invalid Invalid (c) Invalid Shared

COMP35112 | Department of Computer Science 9/26

Possible States for a Dual-Core CPU

(a) Modified Invalid (b) Invalid Invalid (c) Invalid Shared
(d) Shared Shared Modified Shared? Modified Modified?

COMP35112 | Department of Computer Science

Possible States for a Dual-Core CPU

(a) Modified Invalid (b) Invalid Invalid (c) Invalid Shared
(d) Shared Shared (a') Invalid Modified (c’) Shared Invalid

e

COMP35112 | Department of Computer Science

(a) Modified Invalid

State Transitions

(b) Invalid Invalid

(c) Invalid Shared

Core 1

M

Core 2
|

Core 1

Core 2
|

Core 1

Core 2
S

e m—— ——— —

RAM RAM RAM

(a’) Invalid Modified (c’) Shared Invalid

(d) Shared Shared

Core 1 Core 2 Core 1 Core 2 Core 1 Core 2
S S [M S |
RAM RAM RAM

e All of these are legal states. let's study how read and writes on each
core should affect these states

COMP35112 | Department of Computer Science

State Transitions:

e [ransitions have 3 aspects:
o What are the Messages sent between caches:
m Readmessages: 1 corerequest a cache line from another
» /nvalidate messages: 1 core asks another to invalidate one of its
cache lines
o |sthere any access made to main memory
o What are the state changes

COMP35112 | Department of Computer Science 13/26

State Transitions from (a)

(a) Modified Invalid

e Read oncore 1: cache hit, served from cache
e Writeon core 1: cache hit, served from cache

COMP35112 | Department of Computer Science

State Transitions from (a)

(a) Modified Invalid (d) Shared Shared

Core 1 Core 2 Core 1 Core 2

M —> I S S

E RAMRd » RAM

e Readon core 1: served from cache
e Writeon core 1: served from cache
e Read on core 2:
o 2 placesreadrequest onthe bus, snooped by 1
o Twrites back to memory, goes to S state, and sends the data to 2
which goes to S state
o Overall change to state (d): shared/shared

COMP35112 | Department of Computer Science

State Transitions from (a)

(a) Modified Invalid (a") Invalid Modified

Core 1 Core 2 Core 1 Core 2

M —> I I M

5 ! Rd/Inv‘l » | |
RAM RAM

o Write on core 2:
o 2first needs to get the line (write size < line size)
o 2 placesreadrequest onthe bus
o 1snoopstherequest, sendsto 2 and, asitisin M state, writes back
to memory
o 2 placesinvalidate request, core 1 switchesto |
o 2 writesincache and switchesto M
Overall state changes to (a'): invalid/modified

O

COMP35112 | Department of Computer Science 16/26

State Transitions from (b)

(b) Invalid Invalid (c’) Shared Invalid

=

e Readoncorel
o Cache miss, place read request on bus, nobody answers
o Fetches from memory, switchesto S
o Goto(c
e Read oncore 2issimilar by symmetry - goes to state (c):
invalid/shared

COMP35112 | Department of Computer Science

State Transitions from (b)

(b) Invalid Invalid (a) Modified Invalid
Core 1 Core 2 Core 1 Core 2
| [M |
il B |
" RAM RAM

e Writeoncore 1.
o Core 1does not know the state of the line in other cores, places
read request on the bus, nobody answers
o Fetches from memory and performs write in cache, switchesto M
o State goesto (a)
e Writeoncore 2is similar by symmetry - goes to state (a'):
invalid/modified

COMP35112 | Department of Computer Science 18/26

State Transitions from (c)

(c) Invalid Shared (d) Shared Shared

=

<4

Rd

e Readoncore 1:
o 1 placesrequest onthe bus, gets snooped by 2
o 2sendsvalueto 1, whichgoesto S
o Overall state goes to (d): shared/shared
e Read on core 2:
o Cache hit, served from the cache, stays in (c): invalid/shared

COMP35112 | Department of Computer Science

State Transitions from (c)

(c) Invalid Shared (a) Modified Invalid

=

<4—

Rd/Inv

e Writeoncore 1.
o 1 placesareadrequest onthe bus, snooped by 2
o 2sendslineto 1, itwasinSsononeed for writeback
o 1 placesinvalidate request onthe bus, 2 goes to |
o 1 performswrite in cache and goes to M
o Overall state goes to (a): modified/invalid

COMP35112 | Department of Computer Science

State Transitions from (c)

(c) Invalid Shared (a’) Invalid Modified

=

e Writeon core 2:
o 2 does not know the line state in other caches, places invalidate
request on the bus
o 2 performswriteincache and goesto M
o Overall state goes to (a'): invalid/modified

COMP35112 | Department of Computer Science

State Transitions from (d)

(d) Shared Shared (a) Modified Invalid
Core 1 Core 2 Core 1 Core 2
S S M |
Inv » | |

RAM RAM

e Readoncore 1or2: cache hit, served from the cache
e Writeon core 1.
o 1 placesinvalidate request on the bus, get snooped by 2
o 2goestol,itwasinSsono needforwriteback
o 1 performswrite incache, goesto M
o Overall state goes to (a): modified/invalid
e Write on core 2: symmetry, state goes to (a'): invalid/modified

COMP35112 | Department of Computer Science 22/26

Beyond Two Cores

e Extensionbeyond 2 cores:
o Snoopy bus messages are
broadcasted to all cores
o Any core with avalid value
canrespondto a read
request
o Uponreceiving aninvalidate
request:
= Any coreinSinvalidates
without writeback
= Acorein Mwrites back
theninvalidates

COMP35112 | Department of Computer Science

Read miss

@)
.

Write

Write

Write-Invalidate vs. Write-Update

2 types of snooping protocols:

e Write-invalidate:

o When a core updates a cache line, other copies of that line in other
caches are invalidated

o Future accesses on the other copies will require fetching the
updated line from memory/other caches

o Most widespread protocol, used in MS| (this lecture), MESI,
MOESI (next video)

COMP35112 | Department of Computer Science 24 /26

Write-Invalidate vs. Write-Update

2 types of snooping protocols:

e Write-invalidate:

o When a core updates a cache line, other copies of that line in other
caches are invalidated

o Future accesses on the other copies will require fetching the
updated line from memory/other caches

o Most widespread protocol, used in MS| (this lecture), MESI,
MOESI (next video)

e Write-update:

o When a core updates a cache line, the modification is broadcast to
copies of that line in other caches: they are updated

o Leads to higher bus traffic vs. write-invalidate

o Example protocols: Dragon, Firefly

COMP35112 | Department of Computer Science 24 26

Major Implication

o \With cache coherence all cores must always see exactly the same
state of a location in memory
e [fonecorewrites and broadcast invalidate:
o No other core must be able to perform a read/write to that location
as though they haven't seen the invalidate
o All cores must see the invalidate at the same time, i.e. within the
same bus cycle

COMP35112 | Department of Computer Science 25/26

Major Implication

o \With cache coherence all cores must always see exactly the same
state of a location in memory
e [fonecorewrites and broadcast invalidate:
o No other core must be able to perform a read/write to that location
as though they haven't seen the invalidate
o All cores must see the invalidate at the same time, i.e. within the
same bus cycle
o Aswe connect more cores this becomes more and more difficult
o The coherence protocol is a major limitation to the number of
cores that can be supported

COMP35112 | Department of Computer Science 25/26

Summary

Cache coherency is necessary in shared memory multiprocessors
Simple MS| protocol
o Modified/Shared/Invalid states
o Associated transitions upon read/writes from cores
= |nvalidate and line read requests on the interconnect
» Read/write from/to main memory
» Statechanges
Bus-based CC protocol is limiting the number of cores supported
Next:
o MSl's optimisations: MESI and MOESI
o Directory-based coherence protocol

COMP35112 | Department of Computer Science 26/26

