MANCHESTER
1824

The University of Manchester

COMP35112 Chip Multiprocessors

Cache Coherencein
Multiprocessors

Pierre Olivier

1/30

Cache Coherencein
Multiprocessors

e Cache coherence: avoid having
multiple different copies of the
same data in different caches of A reads x then
a shared memory 1) updates it
multiprocessor

Later, B reads x 9
and gets the old version

COMP35112 | Department of Computer Science 2/30

Cache Coherencein
Multiprocessors

e Cache coherence: avoid having
multiple different copies of the
same data in different caches of A reads x then
a shared memory 1) updates it
multiprocessor

Later, B reads x 9
and gets the old version

e Need cache to cache
communication for performance to avoid involving the slow memory

COMP35112 | Department of Computer Science 2/30

Coping with Multiple Cores

A bus is attached to every cache
Bus snooping: hardware attached to each core’s cache
o Observes all transactions on the bus
o Able to modify the cache independently of the core
e [his hardware can take action on seeing pertinent transactions on the
bus
e Another way to look at it:
a cache can send/receive messages to/from other caches

—

COMP35112 | Department of Computer Science

Cache States, MSI Protocol

Cache has 2 control bits for each line it contains, indicating its state

COMP35112 | Department of Computer Science 4/30

Cache States, MSI Protocol

Cache has 2 control bits for each line it contains, indicating its state

COMP35112 | Department of Computer Science 4/30

Cache States, MSI Protocol

Cache has 2 control bits for each line it contains, indicating its state

Cache

Generally 64 bytes

COMP35112 | Department of Computer Science 5/30

Cache States, MSI Protocol

Cache has 2 control bits for each line it contains, indicating its state

e Modified state: the cache line is valid and has Core
been written to but the latest values have
not been updated in memory yet |Cache|x’
o Aline can be in the modified state in at
most 1 core RA X

Modified

COMP35112 | Department of Computer Science 6/30

Cache States, MSI Protocol

Cache has 2 control bits for each line it contains, indicating its state

e Invalid: there may be an address match on
this line but the datais not valid
o Load/stores should not be served from
this cache
o Must fetch line from memory or get it
from another cache

Invalid

COMP35112 | Department of Computer Science

Cache States, MSI Protocol

Cache has 2 control bits for each line it contains, indicating its state

Shared

e Shared: not invalid and not modified
o Avalid cache entry exists and the line has
the same values as main memory
o Several caches can have the same line in
the shared state

COMP35112 | Department of Computer Science

Cache States, MSI Protocol

Cache has 2 control bits for each line it contains, indicating its state

e Shared: not invalid and not modified Core Core

o Avalid cache entry exists and the line has lcache]| [cache[x
the same values as main memory

o Several caches can have the same linein Y X'
the shared state
Modified/Shared/Invalid states and the Shared

transitions taken upon cache accesses by the
core define the MSI protocol

COMP35112 | Department of Computer Science 8/30

Possible States for a Given Cache Lineina
Dual-Core CPU

(a) Modified Invalid (b) Invalid Invalid (c) Invalid Shared
Core 1 Core 2 Core 1 Core 2 Core 1 Core 2
X' M X | x | X | x| | X' S
x| RAM X' RAM X' RAM

(d) Shared Shared

Core 1 Core 2
x'] S x'| S
x'| RAM

COMP35112 | Department of Computer Science 9/30

Possible States for a Given Cache Lineina
Dual-Core CPU

(a) Modified Invalid (b) Invalid Invalid (c) Invalid Shared

Core 1

M

_I_I_I_

Core 2
|

Core 1

Core 2
|

Core 1

_I_I_I_

Core 2
S

_I_I_I_

RAM

RAM

RAM

(d) Shared Shared

Modified Shared?

Modified Modified?

Core 1

S

Core 2

RAM

RAM

Possible States for a Given Cache Lineina

Dual-Core CPU

(a) Modified Invalid

(b) Invalid Invalid

(c) Invalid Shared

Core 1 Core 2 Core 1 Core 2 Core 1 Core 2
M | | | | S
RAM RAM RAM

(d) Shared Shared

(a") Invalid Modified

(c") Shared Invalid

Core 1 Core 2 Core 1 Core 2 Core 1 Core 2
S S | M S |
RAM RAM RAM

State Transitions

(a) Modified Invalid (b) Invalid Invalid (c) Invalid Shared

Core 1 Core 2 Core 1 Core 2 Core 1 Core 2
M | | | | S
RAM RAM RAM
(d) Shared Shared (a’) Invalid Modified (c’) Shared Invalid
Core 1 Core 2 Core 1 Core 2 Core 1 Core 2
S S | M S |
RAM RAM RAM

e Allof these are legal states. let's study how read and writes on each
core should affect these states

COMP35112 | Department of Computer Science

State Transitions:

e State of a cache line may be changed when the core tries to
read/write data in that line
e State transitions have 3 aspects:
o What are the messages sent between caches:
m Readmessages: a cache requests a cache line from another
» /nvalidate messages: a cache asks another cache to invalidate
one of its cache lines
o |sthere any access made to main memory
o \What are the state changes

COMP35112 | Department of Computer Science 13/30

State Transitions:

e State of a cache line may be changed when the core tries to
read/write data in that line
e State transitions have 3 aspects:
o What are the messages sent between caches:
m Readmessages: a cache requests a cache line from another
» /nvalidate messages: a cache asks another cache to invalidate
one of its cache lines
o |sthere any access made to main memory
o \What are the state changes
e Foralineineach valid state we identified, let's study what happens if
the cores tries to read/write data in that line

COMP35112 | Department of Computer Science 13/30

State Transitions from (a)

(a) Modified Invalid

COMP35112 | Department of Computer Science

State Transitions from (a)

(a) Modified Invalid

e Read oncore 1: cache hit, served from cache
e Writeon core 1. cache hit, served from cache

COMP35112 | Department of Computer Science

State Transitions from (a)

(a) Modified Invalid (d) Shared Shared

Core 1 Core 2 Core 1 Core 2

M —> | S S
\

E RAM = » RAM

e Readon core 1: cache hit, served from cache
e Writeon core 1: cache hit, served from cache
e Read on core 2:
o 2 places read request on the bus, snooped by 1
o 1 writes back to memory, goes to S state, and sends the data to 2
which goes to S state
o Qverall change to state (d): shared/shared

COMP35112 | Department of Computer Science

State Transitions from (a)

(a) Modified Invalid (a") Invalid Modified
Core 1 Core 2 Core 1 Core 2
M —> I I M
NI Rd+inv/] » | |
| |
\ RAM RAM

e Write on core 2:

o 2 first needs to get the line (write size < line size)

o 2 placesread reguest on the bus

o 1snoops the request, sends to 2 and, as it is in M state, writes back
to memory

o 2 places invalidate request, core 1 switches to |

o 2 writesin cache and switchesto M

o QOverall state changes to (a'): invalid/modified

State Transitions from (b)

(b) Invalid Invalid

COMP35112 | Department of Computer Science

State Transitions from (b)

(b) Invalid Invalid (c’) Shared Invalid
Core 1 Core 2 Core 1 Core 2
I | S |
o i |
V' RAM RAM

e Readoncorel
o Cache miss, core 1 does not know the state of the line in other
core, place read request on bus, nobody answers
o Fetches from memory, switches to S
o Goto(c')
e Readoncore 2is similar by symmetry - goes to state (c):
invalid/shared

COMP35112 | Department of Computer Science 19/30

State Transitions from (b)

(b) Invalid Invalid (a) Modified Invalid
Core 1 Core 2 Core 1 Core 2
I | M |
i |
" RAM RAM

e Writeoncore 1.
o Core 1does not know the state of the line in other cores, places
read request on the bus, nobody answers
o Fetches from memory and performs write in cache, switches to M
o State goesto (a)
o Writeoncore 2is similar by symmetry - goes to state (a'):
invalid/modified

COMP35112 | Department of Computer Science 20/30

State Transitions from (c)

(c) Invalid Shared

COMP35112 | Department of Computer Science

State Transitions from (c)

(c) Invalid Shared (d) Shared Shared

=)

<4

Rd

e Readoncore 1.
o 1 places request on the bus, gets snooped by 2
o 2 sendsvalueto 1, whichgoesto S
o QOverall state goes to (d): shared/shared
e Read oncore 2:
o Cache hit, served from the cache, stays in (c): invalid/shared

COMP35112 | Department of Computer Science

State Transitions from (c)

(c) Invalid Shared (a) Modified Invalid

=)

<4

Rd+Inv

e Writeoncore 1.
o 1 places aread request on the bus, snooped by 2
2 sends lineto 1, it was in S so no need for writeback
1 places invalidate request on the bus, 2 goes to |
1 performs write in cache and goes to M
Overall state goes to (a): modified/invalid

COMP35112 | Department of Computer Science

State Transitions from (c)

(c) Invalid Shared (a") Invalid Modified

=)

e Writeon core 2:
o 2 does not know the line state in other caches, places invalidate
request on the bus
o 2 performs write in cache and goes to M
o QOverall state goes to (a'): invalid/modified

COMP35112 | Department of Computer Science

State Transitions from (d)

(d) Shared Shared

COMP35112 | Department of Computer Science

State Transitions from (d)

(d) Shared Shared (a) Modified Invalid
Core 1 Core 2 Core 1 Core 2
S S M |
Inv » | |

RAM RAM

e Readoncore 1or 2: cache hit, served from the cache
e Writeon core 1.
o 1 places invalidate request on the bus, get snooped by 2
o 2goestol, itwasinSsononeed forwriteback
o 1 performs write in cache, goesto M
o Qverall state goes to (a): modified/invalid
o Writeoncore 2: symmetry, state goes to (a'): invalid/modified

COMP35112 | Department of Computer Science 26/30

Beyond Two Cores

e Extension beyond 2 cores:
o Snoopy bus messages are
broadcasted to all cores
o Any core with a valid value
can respond to a read
request
o Upon receiving an invalidate
request:
= Any corein Sinvalidates
without writeback
= Acorein M writes back
then invalidates

COMP35112 | Department of Computer Science

Read miss

75
-

Write

Write

Write-Invalidate vs. Write-Update

2 types of snooping protocols:

e Write-invalidate:

o When a core updates a cache line, other copies of that line in other
caches are invalidated

o Future accesses on the other copies will require fetching the
updated line from memory/other caches

o Most widespread protocol, used in MSI (this lecture), MESI,
MOESI (next video)

COMP35112 | Department of Computer Science 28/30

Write-Invalidate vs. Write-Update

2 types of snooping protocols:

e Write-invalidate:

o When a core updates a cache line, other copies of that line in other
caches are invalidated

o Future accesses on the other copies will require fetching the
updated line from memory/other caches

o Most widespread protocol, used in MSI (this lecture), MESI,
MOESI (next video)

e Write-update:

o When a core updates a cache line, the modification is broadcast to
copies of that line in other caches: they are updated

o Leads to higher bus traffic vs. write-invalidate

o Example protocols: Dragon, Firefly

COMP35112 | Department of Computer Science

Major Implication

e With cache coherence all cores must always see exactly the same
state of a location in memory
e [fonecorewrites and broadcasts invalidate:
o No other core must be able to perform a read/write to that
location as though they haven't seen the invalidate
o All cores must see the invalidate at the same time, i.e. within the
same bus cycle

COMP35112 | Department of Computer Science 29/30

Major Implication

e \With cache coherence all cores must always see exactly the same
state of a location in memory
e |fone core writes and broadcasts invalidate:
o No other core must be able to perform a read/write to that
location as though they haven't seen the invalidate
o All cores must see the invalidate at the same time, i.e. within the
same bus cycle
o As we connect more cores this becomes more and more difficult
o The coherence protocol is a major limitation to the number of
cores that can be supported

COMP35112 | Department of Computer Science 29/30

Summary

Cache coherence is necessary in shared memory multiprocessors, for
cores to have a consistent view on memory
Simple MS| protocol
o Modified/Shared/Invalid states
o Associated transitions upon read/writes from cores
= |nvalidate and line read requests on the interconnect
m Read/write from/to main memory
= State changes
Bus-based CC protocol is limiting the number of cores supported
o Next:
o MSI's optimisations: MESI and MOES
o Directory-based coherence protocol

COMP35112 | Department of Computer Science 30/30

