
COMP35112 Chip Multiprocessors

Cache Coherency in
Multiprocessors

Pierre Olivier

1 / 26

2 / 26

COMP35112 | Department of Computer Science

Cache coherency: avoid having
multiple different copies of the
same data
in different caches of
a shared memory
multiprocessor

RAM

CPU A CPU B

x

x→x’ x

A reads x then
updates it

Later, B reads x
and gets the old version1

2

Cache Coherency in
Multiprocessors

3 / 26

COMP35112 | Department of Computer Science

Cache coherency: avoid having
multiple different copies of the
same data
in different caches of
a shared memory
multiprocessor

RAM

CPU A CPU B

x

x→x’ x

A reads x then
updates it

Later, B reads x
and gets the old version1

2

Cache Coherency in
Multiprocessors

Need cache to cache
communication for performance to avoid involving the
slow memory

3 / 26

COMP35112 | Department of Computer Science

Coping with Multiple Cores

A bus is attached to every cache
Bus snooping: hardware attached to each core’s cache

Observes all transactions on the bus
Able to modify the cache independently of the core

This hardware can take action on seeing pertinent transactions on the
bus
Another way to look at it:
a cache can send/receive messages to/from other caches

Cache Cache

RAM

CPU 1 CPU 2

Cache Cache

CPU 3 CPU 4

Cache Cache

CPU 5 CPU 6

4 / 26

COMP35112 | Department of Computer Science

Cache States, MSI Protocol

Cache has 2 control bits for each line it contains, indicating its state

5 / 26

COMP35112 | Department of Computer Science

Cache States, MSI Protocol

Cache has 2 control bits for each line it contains, indicating its state

5 / 26

COMP35112 | Department of Computer Science

Modified state: the cache line is valid and
has been written to but the latest
values
have not been updated in memory yet

A line can be in the modified state in at
most 1 core

RAM

Core

x’

x

Modified

Cache

Cache States, MSI Protocol

Cache has 2 control bits for each line it contains, indicating its state

6 / 26

COMP35112 | Department of Computer Science

Invalid: there may be an address match on
this line but the data is
not valid

We must go to memory and fetch it or get
it from another cache

RAM

Core

x

x’

Invalid

Cache

Cache States, MSI Protocol

Cache has 2 control bits for each line it contains, indicating its state

7 / 26

COMP35112 | Department of Computer Science

Shared: implicit 3rd state, not invalid and not
modified

A valid cache entry exists and the line has
the same values as main
memory
Several caches can have the same line in
that state

RAM

Core

x’

x’

Shared

Cache

Core

x’Cache

Cache States, MSI Protocol

Cache has 2 control bits for each line it contains, indicating its state

8 / 26

COMP35112 | Department of Computer Science

Shared: implicit 3rd state, not invalid and not
modified

A valid cache entry exists and the line has
the same values as main
memory
Several caches can have the same line in
that state

RAM

Core

x’

x’

Shared

Cache

Core

x’Cache

Cache States, MSI Protocol

Cache has 2 control bits for each line it contains, indicating its state

Modified/Shared/Invalid states and the
transitions we'll describe next define the MSI protocol

8 / 26

COMP35112 | Department of Computer Science

Possible States for a Dual-Core CPU

RAM

Core 1 Core 2

M I

(a) Modified Invalid

RAM

Core 1 Core 2

I I

(b) Invalid Invalid

RAM

Core 1 Core 2

I S

(c) Invalid Shared

RAM

Core 1 Core 2

S S

(d) Shared Shared

x

x’ x x x

x’

x

x’

x’

x’

x’ x’

9 / 26

COMP35112 | Department of Computer Science

Possible States for a Dual-Core CPU

RAM

Core 1 Core 2

M S

Modified Shared?

RAM

Core 1 Core 2

M M

Modified Modified?

RAM

Core 1 Core 2

M I

(a) Modified Invalid

RAM

Core 1 Core 2

I I

(b) Invalid Invalid

RAM

Core 1 Core 2

I S

(c) Invalid Shared

RAM

Core 1 Core 2

S S

(d) Shared Shared

10 / 26

COMP35112 | Department of Computer Science

Possible States for a Dual-Core CPU

RAM

Core 1 Core 2

I M

(a’) Invalid Modified

RAM

Core 1 Core 2

S I

(c’) Shared Invalid

RAM

Core 1 Core 2

M I

(a) Modified Invalid

RAM

Core 1 Core 2

I I

(b) Invalid Invalid

RAM

Core 1 Core 2

I S

(c) Invalid Shared

RAM

Core 1 Core 2

S S

(d) Shared Shared

11 / 26

COMP35112 | Department of Computer Science

State Transitions

RAM

Core 1 Core 2

I M

(a’) Invalid Modified

RAM

Core 1 Core 2

S I

(c’) Shared Invalid

RAM

Core 1 Core 2

M I

(a) Modified Invalid

RAM

Core 1 Core 2

I I

(b) Invalid Invalid

RAM

Core 1 Core 2

I S

(c) Invalid Shared

RAM

Core 1 Core 2

S S

(d) Shared Shared

All of these are legal states. let's study how read and writes on each
core should affect these states

12 / 26

COMP35112 | Department of Computer Science

State Transitions:

Transitions have 3 aspects:
What are the Messages sent between caches:

Read messages: 1 core request a cache line from another
Invalidate messages: 1 core asks another to invalidate one of its
cache lines

Is there any access made to main memory
What are the state changes

13 / 26

COMP35112 | Department of Computer Science

State Transitions from (a)

RAM

Core 1 Core 2

M I

(a) Modified Invalid

Read on core 1: cache hit, served from cache
Write on core 1: cache hit, served from cache

14 / 26

COMP35112 | Department of Computer Science

State Transitions from (a)

RAM

Core 1 Core 2

M I

(a) Modified Invalid

RAM

Core 1 Core 2

S S

(d) Shared Shared

Rd

Read on core 1: served from cache
Write on core 1: served from cache
Read on core 2:

2 places read request on the bus, snooped by 1
1 writes back to memory, goes to S state, and sends the data to 2
which
goes to S state
Overall change to state (d): shared/shared

15 / 26

COMP35112 | Department of Computer Science

State Transitions from (a)

RAM

Core 1 Core 2

M I

RAM

Core 1 Core 2

I M

(a’) Invalid Modified

Rd/Inv

(a) Modified Invalid

Write on core 2:
2 first needs to get the line (write size < line size)
2 places read request on the bus
1 snoops the request, sends to 2 and, as it is in M state, writes back
to
memory
2 places invalidate request, core 1 switches to I
2 writes in cache and switches to M
Overall state changes to (a'): invalid/modified

16 / 26

COMP35112 | Department of Computer Science

State Transitions from (b)

RAM

Core 1 Core 2

I I

(b) Invalid Invalid

RAM

Core 1 Core 2

S I

(c’) Shared Invalid

Rd

Read on core 1
Cache miss, place read request on bus, nobody answers
Fetches from memory, switches to S
Go to (c')

Read on core 2 is similar by symmetry - goes to state (c):
invalid/shared

17 / 26

COMP35112 | Department of Computer Science

State Transitions from (b)

RAM

Core 1 Core 2

I I

(b) Invalid Invalid

RAM

Core 1 Core 2

M I

(a) Modified Invalid

Rd

Write on core 1:
Core 1 does not know the state of the line in other cores, places
read request on the bus, nobody answers
Fetches from memory and performs write in cache, switches to M
State goes to (a)

Write on core 2 is similar by symmetry - goes to state (a'):
invalid/modified

18 / 26

COMP35112 | Department of Computer Science

State Transitions from (c)

RAM

Core 1 Core 2

I S

(c) Invalid Shared

RAM

Core 1 Core 2

S S

(d) Shared Shared

Rd

Read on core 1:
1 places request on the bus, gets snooped by 2
2 sends value to 1, which goes to S
Overall state goes to (d): shared/shared

Read on core 2:
Cache hit, served from the cache, stays in (c): invalid/shared

19 / 26

COMP35112 | Department of Computer Science

State Transitions from (c)

RAM

Core 1 Core 2

I S

(c) Invalid Shared

RAM

Core 1 Core 2

M I

(a) Modified Invalid

Rd/Inv

Write on core 1:
1 places a read request on the bus, snooped by 2
2 sends line to 1, it was in S so no need for writeback
1 places invalidate request on the bus, 2 goes to I
1 performs write in cache and goes to M
Overall state goes to (a): modified/invalid

20 / 26

COMP35112 | Department of Computer Science

State Transitions from (c)

RAM

Core 1 Core 2

I S

(c) Invalid Shared

RAM

Core 1 Core 2

I M

(a’) Invalid Modified

Inv

Write on core 2:
2 does not know the line state in other caches, places invalidate
request
on the bus
2 performs write in cache and goes to M
Overall state goes to (a'): invalid/modified

21 / 26

COMP35112 | Department of Computer Science

State Transitions from (d)

RAM

Core 1 Core 2

S S

(d) Shared Shared

RAM

Core 1 Core 2

M I

(a) Modified Invalid

Inv

Read on core 1 or 2: cache hit, served from the cache
Write on core 1:

1 places invalidate request on the bus, get snooped by 2
2 goes to I, it was in S so no need for writeback
1 performs write in cache, goes to M
Overall state goes to (a): modified/invalid

Write on core 2: symmetry, state goes to (a'): invalid/modified

22 / 26

COMP35112 | Department of Computer Science

Extension beyond 2 cores:
Snoopy bus messages are
broadcasted to all cores
Any core with a valid value
can respond to a read
request
Upon receiving an invalidate
request:

Any core in S invalidates
without writeback
A core in M writes back
then invalidates

RAM

Core 1 Core 2

I → S I

Core 3 Core 4

S S

Read miss

Rd?

Rd?Rd?

RAM

Core 1 Core 2

I S → M

Core 3 Core 4

Write

S → I S → I

Inv

Inv
Inv

RAM

Core 1 Core 2

I I → M

Core 3 Core 4

Write

I M → I

Rd+inv

Rd+inv
Rd+inv

Beyond Two Cores

23 / 26

COMP35112 | Department of Computer Science

Write-Invalidate vs. Write-Update

2 types of snooping protocols:

Write-invalidate:
When a core updates a cache line, other copies of that line in other
caches
are invalidated
Future accesses on the other copies will require fetching the
updated line
from memory/other caches
Most widespread protocol, used in MSI (this lecture), MESI,
MOESI (next video)

24 / 26

COMP35112 | Department of Computer Science

Write-Invalidate vs. Write-Update

2 types of snooping protocols:

Write-invalidate:
When a core updates a cache line, other copies of that line in other
caches
are invalidated
Future accesses on the other copies will require fetching the
updated line
from memory/other caches
Most widespread protocol, used in MSI (this lecture), MESI,
MOESI (next video)

Write-update:
When a core updates a cache line, the modification is broadcast to
copies of
that line in other caches: they are updated
Leads to higher bus traffic vs. write-invalidate
Example protocols: Dragon, Firefly

24 / 26

COMP35112 | Department of Computer Science

Major Implication

With cache coherence all cores must always see exactly the same
state of a
location in memory
If one core writes and broadcast invalidate:

No other core must be able to perform a read/write to that location
as
though they haven't seen the invalidate

All cores must see the invalidate at the same time, i.e. within the
same bus
cycle

25 / 26

COMP35112 | Department of Computer Science

Major Implication

With cache coherence all cores must always see exactly the same
state of a
location in memory
If one core writes and broadcast invalidate:

No other core must be able to perform a read/write to that location
as
though they haven't seen the invalidate

All cores must see the invalidate at the same time, i.e. within the
same bus
cycle

As we connect more cores this becomes more and more difficult
The coherence protocol is a major limitation to the number of
cores that
can be supported

25 / 26

COMP35112 | Department of Computer Science

Summary

Cache coherency is necessary in shared memory multiprocessors
Simple MSI protocol

Modified/Shared/Invalid states
Associated transitions upon read/writes from cores

Invalidate and line read requests on the interconnect
Read/write from/to main memory
State changes

Bus-based CC protocol is limiting the number of cores supported
Next:

MSI's optimisations: MESI and MOESI
Directory-based coherence protocol

26 / 26

