MANCHESTER
1824

The University of Manchester

COMP35112 Chip Multiprocessors

More about Locks

Pierre Olivier

1/20

Dangers with Locks

2/20

Dangers with Locks

o :4-:‘:*:*-"*&;_;' =7

e

COMP35112 | Department of Computer Science 3/20

Dangers with Locks

typedef struct {
double balance;
pthread_mutex_t lock;
} account;

void initialise_account(account *a, double balance) {

a->balance = balance;

pthread mutex_init(&a->lock, NULL); // return value checks omitted for brevity
}

void transfer(account *from, account *to, double amount) {
if(from == to) return; // can't take a standard lock twice, avoid account transfer to self

pthread mutex_lock(&from->lock);
pthread mutex_lock(&to->lock);

if(from->balance >= amount) {
from->balance -= amount;
to->balance += amount;

}

pthread_mutex_unlock(&to->lock);
pthread mutex_unlock(&from->lock);

¥ 09-more-about-locks/deadlock.cC)

COMP35112 | Department of Computer Science

https://olivierpierre.github.io/comp35112/lectures/09-more-about-locks/src/deadlock.c
https://github.com/olivierpierre/comp35112-devcontainer

Dangers with Locks

: : Time
void transfer(account *from, account *to, Thread 1: Thread 2:
double amount) { transfer (a, Db)|transfer (b, a)
if(from == to) return;
pthread _mutex_lock(&from->lock); Iock(a)
pthread_mutex_lock(&to->lock); |0Ck(b)
if(from->balance >= amount) {
from->balance -= amount; Try to |0Ck(b);
to->balance += amount; it's held by T2,
} go to sleep
pthread mutex_unlock(&to->lock); Try to |0Ck(a)7
pthread_mutex_unlock(&from->lock); it's held by T1,
}
go to sleep
\ 4

—

Deadlock! (::

COMP35112 | Department of Computer Science 5/20

Dangers with Locks

typedef struct {
int id; // unique integer id, used to sort accounts
double balance;
pthread_mutex_t lock;

} account;

void transfer(account *from, account *to, double amount) {
if(from == to) return;
pthread_mutex_t *lockl = &from->lock, *lock2 = &to->lock;

if(from->id < to->id) { // always lock the accounts in the same order
lockl = &to->lock;
lock2 = &from->lock;

}

pthread_mutex_lock(lock1l);

pthread mutex_ lock(lock2);

if(from->balance >= amount) {
from->balance -= amount;
to->balance += amount;

}
pthread_mutex_unlock(lock2);

pthread_mutex_unlock(lock1);

09-more-about-locks/deadlock-fixed.cC)

https://olivierpierre.github.io/comp35112/lectures/09-more-about-locks/src/deadlock-fixed.c
https://github.com/olivierpierre/comp35112-devcontainer

Dangers with Locks

e Lostwakeupissue
o Example with bounded _buffer code from last lecture

COMP35112 | Department of Computer Science 7/20

Dangers with Locks

e Lostwakeupissue
o Example with bounded _buffer code from last lecture

i
i

COMP35112 | Department of Computer Science 8/20

Dangers with Locks

e Lostwakeupissue
o Example with bounded _buffer code from last lecture

99
1B

COMP35112 | Department of Computer Science 9/20

Dangers with Locks

e Lostwakeupissue
o Example with bounded _buffer code from last lecture

e

COMP35112 | Department of Computer Science 10/20

Dangers with Locks

e Lostwakeupissue
o Example with bounded _buffer code from last lecture

%

COMP35112 | Department of Computer Science

Dangers with Locks

e Lostwakeupissue
o Example with bounded _buffer code from last lecture

ik
I

COMP35112 | Department of Computer Science 12/20

Dangers with Locks

e Lostwakeupissue
o Example with bounded _buffer code from last lecture

09,
IR

COMP35112 | Department of Computer Science 13/20

Dangers with Locks

e Lostwakeupissue
o Example with bounded _buffer code from last lecture

e Fix (here)would be touse pthread _cond_broadcast() instead of
pthread cond signal()
o Wake up all threads (vs. a single thread) waiting on a condition
variable

COMP35112 | Department of Computer Science 14 /20

Misc. Information about Locks

15/20

Granularity

e How big a chunk of code which depends on obtaining a lock should you
write?
o Coarse-vs. fine- grained

/* Coarse-grained locking: */ /* Fine-grained locking: */
lock(); lock();
/* access shared data */
unlock();
/* access a mix of shared and unshared data */ /* access non-shared data */
lock();
/* access shared data */
unlock(); unlock();

COMP35112 | Department of Computer Science 16/20

Reentrant Lock

e By default, athread locking a lock it already holds results in undefined

behaviour
void transfer(account *from, account *to, int main(int argc, char **argv) {
double amount) { account accountil;
/* no check if from == to */ pthread_t ti1;
// BUGGY when from == to if lock is initialize _account(&accountl, 1, INIT_MONEY);
// not reentrant
pthread mutex_ lock(from->lock); /* transfer from accountl to accountl */
pthread mutex_lock(to->lock); worker wl = {&accountl, &accountl,
ITERATIONS};
if(from->balance >= amount) {
from->balance -= amount; pthread create(&t1, NULL, thread_fn,
to->balance += amount; (void *)&wl);
} pthread join(t1l, NULL);
[* ... */
} return O;
} 09-more-about-locks/non-reentrant.c €

COMP35112 | Department of Computer Science 17 /20

https://olivierpierre.github.io/comp35112/lectures/09-more-about-locks/src/non-reentrant.c
https://github.com/olivierpierre/comp35112-devcontainer

Reentrant Lock

o Areentrantl|ock canbe taken by athread that already holds it
o Avoid a thread deadlocking with itself

// Version of the bank account program that allows self transfers
// (return value checks omitted for brevity)

void initialize_account(account *a, int id, double balance) {
a->id = id;
a->balance = balance;

/* Declare the lock as reentrant */

pthread_mutexattr_t attr;

pthread_mutexattr_init(&attr);

pthread mutexattr_settype(&attr, PTHREAD MUTEX_RECURSIVE);
pthread mutex_init(&a->lock, &attr);

09-more-about-locks/reentrant.cC)

COMP35112 | Department of Computer Science 18/20

https://olivierpierre.github.io/comp35112/lectures/09-more-about-locks/src/reentrant.c
https://github.com/olivierpierre/comp35112-devcontainer

Other Lock Types

e Semaphores
o Mutexes that can be hold by multiple threads
o Useful to coordinate access to a fixed number of resources
e Spinlocks
o Threads attempting to hold an unavailable lock will busy-wait
m Asopposed to going to sleep for mutexes
= Monopolises CPU, lower wakeup latency
o Read-write locks
o Allows concurrent reads and exclusive writes

For more information see the multithreaded programming guide:
https:/bit.ly/3FGE3K2

COMP35112 | Department of Computer Science 19/20

https://bit.ly/3FGt3k2

Summary

e | ockscomewith their ownissues
o Concurrency issues are hard to debug, it's important to get your
synchronisation strategy right from the beginning
e [ock granularity and reentrancy
o Other lock types: semaphores, spinlocks, read-write locks

Next lecture: hardware support for synchronisation

COMP35112 | Department of Computer Science 20/20

