MANCHESTER
1824

The University of Manchester

COMP35112 Chip Multiprocessors

Introduction 2

Pierre Olivier

1/12

How to Use Multiple Cores?

Process-level Thread-level
parallelism parallelism
Multicore Multicore
Core A| | CoreB Core A| | CoreB

T R T

Task 1] [Task 2

COMP35112 | Department of Computer Science 2/12

Instruction- vs. Thread-Level Parallelism

e Instruction Level Parallelism (ILP)
o Compiler/hardware automatically parralelises a sequential stream

of instructions — limited

Original sequential instruction stream

>

A B C D E F G H J
: >

Parallel execution [x D |
of some instructions, >
some of which | B C F G H
out of order >
E |]

However, the overall result must be exactly the same as that
produced when the whole sequence was executed in order!

COMP35112 | Department of Computer Science 3/12

Instruction- vs. Thread-Level Parallelism

e Thread-Level Parallelism
o The programmer divides the program into (long) sequences of
Instructions ran in parallel

Multicore Processor

Core Core Core Core

Tl a o a
thread 1 ss t2 t3$ t4$§t5 st6

Many threads may execute in parallel and/or in any order. The overall
result must be ‘the same’ (deterministic) whatever the details of
execution!

COMP35112 | Department of Computer Science 4/12

Thread Level Parallelism

e We'll program with threads in the labs

o We will divide programs into concurrent sections executing as threads
on different cores

e Mainissue: data sharing between threads

o \What happens if a thread reads a variable currently being written
by another thread?

o Brings the need for synchronisation (keyword synchronised in
Java)

COMP35112 | Department of Computer Science 5/12

Thread Level Parallelism

o Setof threads belonging to the same program can run on a single core,
total program's execution time is sum of each thread's exec. time

e Onmulticores threads canrunin parallel, ideally execution time is
sequential execution time / number of parallel threads

On a single >
core CPU: | Thread1 | Thread3 | Thread 2 | [| | |

Onadual- L_Thread1 | [1]
core CPU: [T Thread3 [Thread 2 |

COMP35112 | Department of Computer Science 6/12

Thread Level Parallelism

o Setof threads belonging to the same program can run on a single core,
total program's execution time is sum of each thread's exec. time

e On multicores threads canrunin parallel, ideally execution time is
sequential execution time / number of parallel threads

On a single >
core CPU: | Thread1 | Thread3 | Thread 2 | [| | |

Onadual- L_Thread1 | ||
core CPU: [T Thread3 [Thread 2 | l

o |[LPislimited but TLPis"general purpose" and can be used to generate
large amount of parallelism

o Atthe cost of programmer's effort + program must be suitable

COMP35112 | Department of Computer Science 6/12

Data Parallelism

o Exploit structured parallelism contained in specific programs
e Data parallelismis usually associated with computation on a multi-

dimensional array
e Many array computations perform the same or very similar

computation on all elements

1141 2 2|1 3] 4

5|+

~

AW

3
1

1
3|3 2

COMP35112 | Department of Computer Science

Data Parallelism Examples

e General
o Matrix multiply (used heavily in CNNs, for example)
o Fourier transform
e Graphics
o Anti-aliasing
o Texture mapping
o [llumination and shading
e Differential Equations
o Weather/climate forecasting
o Engineering simulation (and “Physics” in Games)
o Financial modelling

COMP35112 | Department of Computer Science 8/12

Complexity of Parallelism

o Parallel programming is generally considered to be difficult, but
depends a lot on the program structure

Regular
parallelism with
little or no data

sharing

EASY
HARD
Irregular
parallelism with
large amounts of
multiple-write
data sharing

COMP35112 | Department of Computer Science 9/12

Chip Multiprocessor
Considerations

e How should we build the hardware?
o How are cores connected?
o How are they connected to memory?
o Should they reflect particular parallel programming patterns (e.g.

data parallelism)?
o Simplevs. complex cores?
o General vs. Special Purpose (e.g. graphics processors)?

COMP35112 | Department of Computer Science 10/12

Chip Multiprocessor
Considerations

e How should we build the hardware?

o How are cores connected?

o How are they connected to memory?

o Should they reflect particular parallel programming patterns (e.g.

data parallelism)?

o Simplevs. complex cores?

o General vs. Special Purpose (e.g. graphics processors)?
e How should we program them?

o Extended ‘conventional’ languages?

o Domain specific languages?

o Totally new approaches?

COMP35112 | Department of Computer Science 10/12

Overview of Lectures

e [hread-based programming, thread synchronisation

e Cache coherency in homogeneous shared memory multiprocessors
e Hardware support for thread synchronisation

e Operating system support for threads, concurrency within the kernel
o Alternative programming views

e Speculation and transactional memory

e Heterogeneous processors/cores/programs

e Radical approaches (e.g. dataflow programming)

COMP35112 | Department of Computer Science 11/12

Summary

e Single core performance has been plateauing but we can still pack
more transistors on a single chip
e Put multiple compute units on asingle integrated circuit: chip
multiprocessors
e Hasimportant implications
o Hardware: what CPUs to use, how are they connected, do they
shared memory?
o Software: how to program these things?

e |nteresting read: http://www.gotw.ca/publications/concurrency-
ddj.htm

COMP35112 | Department of Computer Science 12/12

http://www.gotw.ca/publications/concurrency-ddj.htm

