
COMP35112 Chip Multiprocessors

Operating System Support for
Multithreading

Pierre Olivier

1 / 50

COMP35112 | Department of Computer Science

OS Support for Multithreading

Aspects of chip multiprocessor we covered until now:
Software (user level): POSIX thread programming
Hardware: cores, cache coherence, atomic operations

Let's have a look at what sits in between: the operating system

Multithreaded App

pthread API

Operating System ?

core
Hardware: chip multiprocessor

core core core

2 / 50

COMP35112 | Department of Computer Science

OS Support for Multithreading

Aspects of chip multiprocessor we covered until now:
Software (user level): POSIX thread programming
Hardware: cores, cache coherence, atomic operations

Let's have a look at what sits in between: the operating system

Multithreaded App

pthread API

Operating System ?

core
Hardware: chip multiprocessor

core core core

Focusing on Linux, what is the role of the operating system in the
management and synchronisation of multithreaded programs?
How is concurrency managed in the kernel?

2 / 50

Thread ManagementThread Management

3 / 503 / 50

COMP35112 | Department of Computer Science

Thread Management

A thread is a unique schedulable entity in the system
Each process has 1 or more threads

TID:
551

TID:
552

TID:
554

TID:
985

TID:
986

TID:
471

PID: 551 PID: 985 PID: 471

Process Thread

Single-
threaded app.Multithreaded applications

Each thread is uniquely identified by its TID
Threads sharing the same address space will report the same PID
(equals to the main thread's TID)
Many system calls requiring a PID (e.g. sched_setscheduler) actually
work on a TID, read man pages

4 / 50

COMP35112 | Department of Computer Science

Thread Management
#define _GNU_SOURCE // Required for gettid() on Linux
/* includes here */
void *thread_function(void *arg) {
 printf("child thread, pid: %d, tid: %d\n", getpid(), gettid());
 pthread_exit(NULL);
}

int main() {
 pthread_t thread1, thread2;
 printf("parent thread, pid: %d, tid: %d\n", getpid(), gettid());

 pthread_create(&thread1, NULL, threadFunction, NULL);
 pthread_create(&thread2, NULL, threadFunction, NULL);
 pthread_join(thread1, NULL);
 pthread_join(thread2, NULL);
}

Example of output:

parent thread, pid: 12674, tid: 12674
child thread, pid: 12674, tid: 12675
child thread, pid: 12674, tid: 12676

5 / 50

COMP35112 | Department of Computer Science

Thread Creation

Processes and threads are created with the clone() system call:

long clone(unsigned long flags, void *stack, int *parent_tid, int *child_tid,
 unsigned long tls);

6 / 50

COMP35112 | Department of Computer Science

Thread Creation

Processes and threads are created with the clone() system call:

long clone(unsigned long flags, void *stack, int *parent_tid, int *child_tid,
 unsigned long tls);

When creating a process most of these parameters do not matter
and are set to 0/NULL

Behaviour similar to the fork UNIX primitive: parent's resources
(including address space) are duplicated for the child

6 / 50

COMP35112 | Department of Computer Science

Thread Creation

Processes and threads are created with the clone() system call:

long clone(unsigned long flags, void *stack, int *parent_tid, int *child_tid,
 unsigned long tls);

When creating a process most of these parameters do not matter
and are set to 0/NULL

Behaviour similar to the fork UNIX primitive: parent's resources
(including address space) are duplicated for the child

When creating a thread:
flags specifies creation options
stack and tls point to the child's stack and thread local storage
parent_tid and child_tid specify where to store the id of the
created thread

6 / 50

COMP35112 | Department of Computer Science

Thread Creation

Musl libc's pthread_create implementation in
src/thread/pthread_create.c (simplified):

1. Prepare clone's flags with CLONE_VM | CLONE_THREAD and more
2. Allocate space for a stack (pointed by stack) with mmap, and create

TLS area (pointed by new) with __copy_tls
3. Place on that stack a data structure with the thread's argument

and entry point
4. Call clone's wrapper __clone (simplified):

ret = __clone(start, stack, flags, args, &new->tid, TP_ADJ(new), &__thread_list_lock);

7 / 50

https://github.com/bminor/musl/blob/master/src/thread/pthread_create.c

COMP35112 | Department of Computer Science

__clone:
 xor %eax,%eax // clear eax
 mov $56,%al // clone's syscall id
 mov %rdi,%r11 // entry point in r11
 mov %rdx,%rdi // flags in rdi
 mov %r8,%rdx // parent_tid in rdx
 mov %r9,%r8 // TLS in r8
 mov 8(%rsp),%r10
 mov %r11,%r9 // entry point in r9
 and $-16,%rsi
 sub $8,%rsi // stack in rsi
 mov %rcx,(%rsi) // push thread args

 syscall // actual call to clone
 test %eax,%eax // check parent/child
 jnz 1f // parent jump
 xor %ebp,%ebp // child clears base pointer
 pop %rdi // thread args in rdi
 call *%r9 // jump to entry point
 mov %eax,%edi // ain't supposed to return
 xor %eax,%eax // here, something's wrong
 mov $60,%al
 syscall // exit (60 is exit's id)
 hlt
1: ret // parent returns

Thread Creation
__clone(start, stack, flags, args, &new->tid, TP_ADJ(new), &__thread_list_lock); // wrapper
clone(unsigned long flags, void *stack, int *ptid, int *ctid, unsigned long tls); // syscall

__clone is implemented for x86-64 in src/thread/x86_64/clonse.s
x86-64 calling convention: arguments in order in %rdi, %rsi, %rdx,
%rcx, %r8, %r9, return value in %rax

8 / 50

https://github.com/bminor/musl/blob/master/src/thread/x86_64/clone.s

COMP35112 | Department of Computer Science

Thread Creation

Inside the kernel when clone is implemented in kernel/fork.c:

1. System call handler calls sys_clone
2. sys_clone calls kernel_clone, which calls copy_process
3. copy_process implements the parent's duplication:

Calls various functions checking clone's flags to know what needs
to be copied and what needs to be shared between parent/child
E.g. for the address space (simplified):

static int copy_mm(unsigned long clone_flags, struct task_struct *tsk) {
 /* ... */
 if (clone_flags & CLONE_VM) {
 mmget(oldmm);
 mm = oldmm;
 } else
 mm = dup_mm(tsk, current->mm);
 /* ... */
}

9 / 50

https://github.com/torvalds/linux/blob/v6.7/kernel/fork.c#L3034

COMP35112 | Department of Computer Science

Thread Creation

Back to user space the thread starts at the start entry point defined
by Musl in src/thread/pthread_create.c:

It extracts from the stack the args data structure containing the
user-defined thread entry point and parameter
Then calls the entry point and passes it the parameter

static int start(void *p) {
 struct start_args *args = p;
 /* ... */
 __pthread_exit(args->start_func(args->start_arg));
}

10 / 50

https://github.com/bminor/musl/blob/master/src/thread/pthread_create.c

Locks ImplementationsLocks Implementations

11 / 5011 / 50

COMP35112 | Department of Computer Science

Under the hood pthread_mutex_lock and
other sleep-based lock access primitives rely
on the kernel
There is a good reason to implement such
locks in the kernel rather than user space:

The kernel is the entity that can put
threads to sleep and wake them up

Kernel
lock

pthread_
mutex

Application

Kernel

Hardware

syscalls

Atomic ops

thread

Sleep/
wakeup

lock

Libc/pthread
library

unlock

In-Kernel Locks

12 / 50

COMP35112 | Department of Computer Science

In-Kernel Locks

Historically each lock operation, including lock take/release, required
a system call

As implemented with e.g. System V semaphores
User/kernel world switches are expensive and the resulting
overhead is non-negligible in low-contention scenarios

User
space

Kernel
space Lock

thread

thread

thread System calls:
costly!

13 / 50

COMP35112 | Department of Computer Science

Futex

Observation: we only need kernel intervention when there is
contention, i.e. when a thread needs to sleep
Futex: Fast User space mutEX

Lock implemented in part in user space with atomic operations
when there is no contention
And another part in kernel space when there is contention and
threads need to be put to sleep

14 / 50

COMP35112 | Department of Computer Science

Futex

User
space

Kernel
space

32 bit futex word = 0

T1 T2 T3

0 → unlocked

15 / 50

COMP35112 | Department of Computer Science

Futex

User
space

Kernel
space

0 → 1

T1 T2 T3

CAS

1 → locked

16 / 50

COMP35112 | Department of Computer Science

Futex

User
space

Kernel
space

1
CAS

T1 T2 T3

17 / 50

COMP35112 | Department of Computer Science

Futex

User
space

Kernel
space

1

T1 T2 T3

18 / 50

COMP35112 | Department of Computer Science

Futex

User
space

Kernel
space

1
CAS

T1 T2 T3

19 / 50

COMP35112 | Department of Computer Science

Futex

User
space

Kernel
space

1

Wait queue

CAS

Syscall

T1 T2 T3

20 / 50

COMP35112 | Department of Computer Science

Futex

User
space

Kernel
space

1

t2

Wait queue

CAS Syscall

T1 T2 T3

21 / 50

COMP35112 | Department of Computer Science

Futex

User
space

Kernel
space

1

t2

Wait queue

CAS

Syscall

t1

😴

T1 T2 T3

22 / 50

COMP35112 | Department of Computer Science

Futex

User
space

Kernel
space

1 → 0

Wait queue

t1

😴😴

Syscall

🔔

T1 T2 T3

store

23 / 50

COMP35112 | Department of Computer Science

Futex

User
space

Kernel
space

0 → 1

Wait queue

t1

😴 CAS

T1 T2 T3

24 / 50

COMP35112 | Department of Computer Science

Futex

User
space

Kernel
space

1 → 0

Wait queue

😴

T1 T2 T3

store

Syscall

🔔

25 / 50

COMP35112 | Department of Computer Science

Futex

User
space

Kernel
space

0 → 1

T1 T2 T3

CAS

26 / 50

COMP35112 | Department of Computer Science

Futex

User
space

Kernel
space

1 → 0

T1 T2 T3

store

Syscall

27 / 50

COMP35112 | Department of Computer Science

12-os-support-for-multithreading/lock-bench-custom-futex.c

Basic Futex Lock Implementation
/* check full implementation for includes */

atomic_int my_mutex = ATOMIC_VAR_INIT(0);

int my_mutex_lock() {
 int is_free = 0, taken = 1;

 // cas(value_to_test, expected_value, new_value_to_set)
 while(!atomic_compare_exchange_strong(&my_mutex, &is_free, taken)) {
 // put the thread to sleep waiting for FUTEX_WAKE if my_mutex is still equal to 1
 syscall(SYS_futex, &my_mutex, FUTEX_WAIT, 1, NULL, NULL, 0);
 }
 return 0;
}

int my_mutex_unlock() {
 atomic_store(&my_mutex, 0);

 // wake up 1 thread if needed
 syscall(SYS_futex, &my_mutex, FUTEX_WAKE, 1, NULL, NULL, 0);
 return 0;
}

28 / 50

https://olivierpierre.github.io/comp35112/lectures/12-os-support-for-multithreading/src/lock-bench-custom-futex.c
https://github.com/olivierpierre/comp35112-devcontainer

COMP35112 | Department of Computer Science

12-os-support-for-multithreading/lock-bench

Investigating Lock Performance

Measure latency introduced by locking/unlocking operations:

void *thread_function(void *arg) {
 for(int i=0; i < CS_NUM; i++) {

 lock();
 // instantaneous critical section to maximise the impact of the latency introduced by the
 // lock/unlock operations
 unlock();
 }

 return;
}

29 / 50

https://olivierpierre.github.io/comp35112/lectures/12-os-support-for-multithreading/src/lock-bench.zip
https://github.com/olivierpierre/comp35112-devcontainer

COMP35112 | Department of Computer Science

Pthread Mutex Implementation

Previous custom futex lock implementation is suboptimal (and not
100% correct https://www.akkadia.org/drepper/futex.pdf)
Musl implementation of pthread_mutex_lock in
src/thread/pthread_mutex_lock.c:

int __pthread_mutex_lock(pthread_mutex_t *m) {
 if ((m->_m_type&15) == PTHREAD_MUTEX_NORMAL
 && !a_cas(&m->_m_lock, 0, EBUSY)) // CAS, futex fast path
 return 0;

 return __pthread_mutex_timedlock(m, 0); // Didn't get the lock
}

pthread_mutex_timedlock (in
src/thread/pthread_mutex_timedlock.c) calls a bunch of functions
that end up in FUTEX_WAIT being called in __timedwait_cp (in
src/thread/__timedwait.c)

30 / 50

https://www.akkadia.org/drepper/futex.pdf
https://github.com/bminor/musl/blob/master/src/thread/pthread_mutex_lock.c
https://github.com/bminor/musl/blob/master/src/thread/pthread_mutex_timedlock.c
https://github.com/bminor/musl/blob/master/src/thread/__timedwait.c

COMP35112 | Department of Computer Science

Pthread Mutex Implementation

Musl implementation of pthread_mutex_unlock in
src/thread/pthread_mutex_unlock.c:

int __pthread_mutex_unlock(pthread_mutex_t *m) {
 int waiters = m->_m_waiters;

 /* ... */

 cont = a_swap(&m->_m_lock, new);

 if (waiters || cont<0)
 __wake(&m->_m_lock, 1, priv);
}

31 / 50

https://github.com/bminor/musl/blob/master/src/thread/pthread_mutex_unlock.c

Concurrency in the KernelConcurrency in the Kernel

32 / 5032 / 50

COMP35112 | Department of Computer Science

Concurrency in the Kernel

There used to be a big kernel lock serialising all execution of kernel
code

Slowly removed over time, removal finalised in v2.6.39 (2011)
Today the kernel is a highly concurrent, shared memory program

33 / 50

COMP35112 | Department of Computer Science

Core 1Core 1 Core 2 Core 3 Core 4

Thread Thread

ProcessUser
space

Kernel
space

Hardware

Syscall

Thread

Process

Exception

Thread

Process

Core 5

Interruption

Kernel
thread

Kernel code execution (often concurrent)

Sources of
concurrency:
system calls, exceptions,
hardware interrupts,
kernel threads & more,
preemption, etc.

Concurrency in the Kernel

There used to be a big kernel lock serialising all execution of kernel
code

Slowly removed over time, removal finalised in v2.6.39 (2011)
Today the kernel is a highly concurrent, shared memory program

33 / 50

COMP35112 | Department of Computer Science

Locking in the Kernel

Similar to user space, in-kernel critical data sections must be
protected by locks
Different types available:

34 / 50

COMP35112 | Department of Computer Science

Locking in the Kernel

Similar to user space, in-kernel critical data sections must be
protected by locks
Different types available:

Mutexes: sleep-based wait, usage count (number of entities that
can hold the mutex) is 1

34 / 50

COMP35112 | Department of Computer Science

Locking in the Kernel

Similar to user space, in-kernel critical data sections must be
protected by locks
Different types available:

Mutexes: sleep-based wait, usage count (number of entities that
can hold the mutex) is 1
Semaphores: sleep-based wait, usage count can be >= 1

34 / 50

COMP35112 | Department of Computer Science

Locking in the Kernel

Similar to user space, in-kernel critical data sections must be
protected by locks
Different types available:

Mutexes: sleep-based wait, usage count (number of entities that
can hold the mutex) is 1
Semaphores: sleep-based wait, usage count can be >= 1
Spinlocks: busy waiting, usage count 1

Run with preemption and possibly interrupts disabled
Usable when kernel execution cannot sleep (e.g. interrupt
context, preemption disabled)

34 / 50

COMP35112 | Department of Computer Science

Locking in the Kernel

Similar to user space, in-kernel critical data sections must be
protected by locks
Different types available:

Mutexes: sleep-based wait, usage count (number of entities that
can hold the mutex) is 1
Semaphores: sleep-based wait, usage count can be >= 1
Spinlocks: busy waiting, usage count 1

Run with preemption and possibly interrupts disabled
Usable when kernel execution cannot sleep (e.g. interrupt
context, preemption disabled)

Completion variables (~condition variables)

34 / 50

COMP35112 | Department of Computer Science

Locking in the Kernel

Similar to user space, in-kernel critical data sections must be
protected by locks
Different types available:

Mutexes: sleep-based wait, usage count (number of entities that
can hold the mutex) is 1
Semaphores: sleep-based wait, usage count can be >= 1
Spinlocks: busy waiting, usage count 1

Run with preemption and possibly interrupts disabled
Usable when kernel execution cannot sleep (e.g. interrupt
context, preemption disabled)

Completion variables (~condition variables)
Reader-writer spinlocks
Sequential locks

34 / 50

COMP35112 | Department of Computer Science

Spinlocks in the Kernel

Interrupt handler for the i8042 mouse/keyboard driver in
drivers/input/serio/i8042.c:

static irqreturn_t i8042_interrupt(int irq, void *dev_id) {

 spin_lock_irqsave(&i8042_lock, flags);
 /* read data from device */
 spin_unlock_irqrestore(&i8042_lock, flags);
}

Spinlock needed, interrupt context cannot sleep (not a schedulable
entity)
spin_lock_irqsave takes the lock and disable interrupts if they are
not already disabled
spin_unlock_irqrestore releases the lock and restore interrupt if
they were enabled when spin_lock_irqsave was called

35 / 50

https://github.com/torvalds/linux/blob/v6.7/drivers/input/serio/i8042.c#L522

COMP35112 | Department of Computer Science

Reader-Writer Spinlocks

Serialises write accesses with other (read/write accesses), but allows
concurrent readers

Reader 1

Writer spins...

Time

Critical section:

Writer tries to
take the lock

Reader 2

Reader 3

Writer 1

36 / 50

COMP35112 | Department of Computer Science

Sequential Locks

Lock has a sequence number associated:
Incremented each time a writer acquires the lock
Incremented each time a writer releases the lock

Concurrent readers are allowed, they check the number at the
beginning and end of their critical section

If it has changed, a writer started/finished during teh reader's
critical section

Need to read again: reader restarts its critical section
Seqlocks scales to many readers like reader-writer locks, but favour
writers

37 / 50

COMP35112 | Department of Computer Science

Sequential Locks

Reader 1

Writer spins...

Time

Critical section:

Writer tries to
take the lock

Reader 2

Reader 3

Writer 1

Reader 1

Time
Writer tries to
take the lock

Reader 2

Reader 3

Writer 1

Sequence number
changed, read again

Reader-
writer
lock

Seqlock spin

+1 +1

38 / 50

COMP35112 | Department of Computer Science

Read-Copy-Update

RCU protects a critical section and allows concurrent lockless
readers
For situations in which it's OK for concurrent readers not to see the
same state for a given piece of data, as long as all see a consistent
state
Extensively used in the kernel

39 / 50

COMP35112 | Department of Computer Science

data1: 42
data2: 22
data3: 11

next

data1: 24
data2: 98
data3: 34

next

data1: 22
data2: 58
data3: 78

next NULL

head
Singly linked list
Readers traverse
the list to read data
from certain nodes
Writers traverse the
list to update the
data contained in
certain nodes
Writers also
add/delete elements

RCU Example: Linked List Update

40 / 50

COMP35112 | Department of Computer Science

data1: 42
data2: 22
data3: 11

next

data1: 24
data2: 98
data3: 34

next

data1: 22
data2: 58
data3: 78

next NULL

head

Writer wants to update
this node’s content
(2+ fields, can’t use
atomic operations)

RCU Example: Linked List Update

41 / 50

COMP35112 | Department of Computer Science

data1: 42
data2: 22
data3: 11

next

data1: 24
data2: 98
data3: 34

next

data1: 22
data2: 58
data3: 78

next NULL

head

Allocate

1. Allocate a new node

RCU Example: Linked List Update

42 / 50

COMP35112 | Department of Computer Science

data1: 42
data2: 22
data3: 11

next

data1: 24
data2: 98
data3: 34

next

data1: 22
data2: 58
data3: 78

next NULL

head

data1: 24
data2: 98
data3: 34

next
Copy

1. Allocate a new node
2. Copy target node

data

RCU Example: Linked List Update

43 / 50

COMP35112 | Department of Computer Science

data1: 42
data2: 22
data3: 11

next

data1: 24
data2: 98
data3: 34

next

data1: 22
data2: 58
data3: 78

next NULL

head

data1: 42
data2: 42
data3: 34

next
Update

1. Allocate a new node
2. Copy target node

data
3. Perform update

RCU Example: Linked List Update

44 / 50

COMP35112 | Department of Computer Science

data1: 42
data2: 22
data3: 11

next

data1: 24
data2: 98
data3: 34

next

data1: 22
data2: 58
data3: 78

next NULL

head

data1: 42
data2: 42
data3: 34

next

1. Allocate a new node
2. Copy target node

data
3. Perform update
4. Point to next node

RCU Example: Linked List Update

45 / 50

COMP35112 | Department of Computer Science

data1: 42
data2: 22
data3: 11

next

data1: 24
data2: 98
data3: 34

next

data1: 22
data2: 58
data3: 78

next NULL

head

data1: 42
data2: 42
data3: 34

next

Atomic ref.
update

1. Allocate a new node
2. Copy target node

data
3. Perform update
4. Point to next node
5. Atomically swap

previous node next
pointer

RCU Example: Linked List Update

46 / 50

COMP35112 | Department of Computer Science

data1: 42
data2: 22
data3: 11

next

data1: 24
data2: 98
data3: 34

next

data1: 22
data2: 58
data3: 78

next NULL

head

data1: 42
data2: 42
data3: 34

next

Wait for grace
period to end

1. Allocate a new node
2. Copy target node

data
3. Perform update
4. Point to next node
5. Atomically swap

previous node next
pointer

6. Grace period: wait
for outstanding
readers on the old
queue state to finish

RCU Example: Linked List Update

47 / 50

COMP35112 | Department of Computer Science

data1: 42
data2: 22
data3: 11

next

data1: 22
data2: 58
data3: 78

next NULL

head

data1: 42
data2: 42
data3: 34

next

Free old version
of the node

1. Allocate a new node
2. Copy target node

data
3. Perform update
4. Point to next node
5. Atomically swap

previous node next
pointer

6. Grace period: wait
for outstanding
readers on the old
queue state to finish

7. Free old node

RCU Example: Linked List Update

48 / 50

COMP35112 | Department of Computer Science

struct foo { int a; int b; int c; };
DEFINE_SPINLOCK(foo_mutex);
struct foo __rcu *gbl_foo;

void foo_write(int new_ab) {
 struct foo *new_fp, *old_fp;

 new_fp = kmalloc(sizeof(*new_fp),
 GFP_KERNEL); // allocate new data

 spin_lock(&foo_mutex); // serialise writers
 // get a ref to the data:
 old_fp = rcu_dereference_protected(gbl_foo,
 lockdep_is_held(&foo_mutex));
 *new_fp = *old_fp; // copy data
 new_fp->a = new_ab; // update data
 new_fp->b = new_ab; // update data
 // atmoic ref update:
 rcu_assign_pointer(gbl_foo, new_fp);
 spin_unlock(&foo_mutex);

12-os-support-for-multithreading/rcu

 synchronize_rcu(); // wait for grace period
 kfree(old_fp); // free old data
}

void foo_read(void) {
 struct foo *fp;
 int a, b, c;

 rcu_read_lock();
 fp = rcu_dereference(gbl_foo);
 a = fp->a;
 b = fp->b;
 c = fp->c;
 rcu_read_unlock();

 /* do something with a, b, c... */
}

RCU Example in Linux

From https://www.kernel.org/doc/html/next/RCU/whatisRCU.html

49 / 50

https://olivierpierre.github.io/comp35112/lectures/12-os-support-for-multithreading/src/rcu.zip
https://github.com/olivierpierre/comp35112-devcontainer
https://www.kernel.org/doc/html/next/RCU/whatisRCU.html

COMP35112 | Department of Computer Science

Wrapping Up

The kernel sits between multithreaded applications and the
multicore hardware

Involved in thread management and many synchronisation
primitives

The kernel is itself a highly concurrent program
Needs its own synchronisation primitives

50 / 50

