
COMP35112 Chip Multiprocessors




Introduction 2

Pierre Olivier

1 / 12



COMP35112 | Department of Computer Science

How to Use Multiple Cores?

Core A Core B

Task 1 Task 2

Multicore

Core A Core B

Task 3

Multicore

Process-level 
parallelism

Thread-level 
parallelism

2 / 12



COMP35112 | Department of Computer Science

Instruction- vs. Thread-Level Parallelism

Instruction Level Parallelism (ILP)
Compiler/hardware automatically parralelises a sequential stream
of
instructions → limited

A B C D E F G H I J

Original sequential instruction stream

A

B C

D

E

F HG

I

J

Parallel execution
of some instructions,

some of which
out of order

However, the overall result must be exactly the same as that 
produced when the whole sequence was executed in order!

3 / 12



COMP35112 | Department of Computer Science

Instruction- vs. Thread-Level Parallelism

Thread-Level Parallelism
The programmer divides the program into (long) sequences of
instructions
ran in parallel

Core Core

Process

Multicore Processor

Core Core

thread 1 t2 t3 t4 t5 t6

Many threads may execute in parallel and/or in any order. The overall 
result must be ‘the same’ (deterministic) whatever the details of 

execution!

4 / 12



COMP35112 | Department of Computer Science

Thread Level Parallelism

We'll program with threads in the labs
We will divide programs into concurrent sections executing as threads
on different cores
Main issue: data sharing between threads

What happens if a thread reads a variable currently being written
by
another thread?
Brings the need for synchronisation (keyword synchronised in
Java)

5 / 12



COMP35112 | Department of Computer Science

Thread Level Parallelism

Set of threads belonging to the same program can run on a single core,
total program's execution time is sum of each thread's exec. time
On multicores threads can run in parallel, ideally execution time is
sequential execution time / number of parallel threads

Thread 1 Thread 3 Thread 2
On a single

core CPU:

Thread 1

Thread 3 Thread 2

On a dual-
core CPU:

6 / 12



COMP35112 | Department of Computer Science

Thread Level Parallelism

Set of threads belonging to the same program can run on a single core,
total program's execution time is sum of each thread's exec. time
On multicores threads can run in parallel, ideally execution time is
sequential execution time / number of parallel threads

Thread 1 Thread 3 Thread 2
On a single

core CPU:

Thread 1

Thread 3 Thread 2

On a dual-
core CPU:

ILP is limited but TLP is "general purpose" and can be used to generate
large amount of parallelism

At the cost of programmer's effort + program must be suitable

6 / 12



COMP35112 | Department of Computer Science

Data Parallelism

Exploit structured parallelism contained in specific programs
Data parallelism is usually associated with computation on a
multi-
dimensional array
Many array computations perform the same or very similar
computation on all
elements

1 4 2

1 6 5

3 3 2

2 3 4

3 1 7

1 2 1
+ =

3 7 6

4 7 12

4 2 3

7 / 12



COMP35112 | Department of Computer Science

Data Parallelism Examples

General
Matrix multiply (used heavily in CNNs, for example)
Fourier transform

Graphics
Anti-aliasing
Texture mapping
Illumination and shading

Differential Equations
Weather/climate forecasting
Engineering simulation (and “Physics” in Games)
Financial modelling

8 / 12



COMP35112 | Department of Computer Science

Complexity of Parallelism

Parallel programming is generally considered to be difficult, but
depends a
lot on the program structure

Regular 
parallelism with 
little or no data 

sharing

Irregular 
parallelism with 

large amounts of 
multiple-write 
data sharing

EASY
HARD

9 / 12



COMP35112 | Department of Computer Science

Chip Multiprocessor
Considerations

How should we build the hardware?
How are cores connected?
How are they connected to memory?
Should they reflect particular parallel programming patterns (e.g.
data
parallelism)?
Simple vs. complex cores?
General vs. Special Purpose (e.g. graphics processors)?

10 / 12



COMP35112 | Department of Computer Science

Chip Multiprocessor
Considerations

How should we build the hardware?
How are cores connected?
How are they connected to memory?
Should they reflect particular parallel programming patterns (e.g.
data
parallelism)?
Simple vs. complex cores?
General vs. Special Purpose (e.g. graphics processors)?

How should we program them?
Extended ‘conventional’ languages?
Domain specific languages?
Totally new approaches?

10 / 12



COMP35112 | Department of Computer Science

Overview of Lectures

Thread-based programming, thread synchronisation
Cache coherency in homogeneous shared memory multiprocessors
Hardware support for thread synchronisation
Operating system support for threads, concurrency within the kernel
Alternative programming views
Speculation and transactional memory
Heterogeneous processors/cores/programs
Radical approaches (e.g. dataflow programming)

11 / 12



COMP35112 | Department of Computer Science

Summary

Single core performance has been plateauing but we can still pack
more transistors
on a single chip
Put multiple compute units on a single integrated circuit: chip
multiprocessors
Has important implications

Hardware: what CPUs to use, how are they connected, do they
shared memory?
Software: how to program these things?

Interesting read: http://www.gotw.ca/publications/concurrency-
ddj.htm

12 / 12

http://www.gotw.ca/publications/concurrency-ddj.htm

