
COMP35112 Chip Multiprocessors

Load-Linked and Store-Conditional

Pierre Olivier

1 / 14

COMP35112 | Department of Computer Science

Load-Linked and Store-Conditional

LL/SC used in RISC processors: ARM, IBM Power, etc.
2 instructions:

Load-linked
Store-conditional

2 / 14

COMP35112 | Department of Computer Science

Load-Linked and Store-Conditional

LL/SC used in RISC processors: ARM, IBM Power, etc.
2 instructions:

Load-linked
Store-conditional

Slightly different from traditional loads and stores
Additional effects on CPU state

2 / 14

COMP35112 | Department of Computer Science

Load-Linked and Store-Conditional

LL/SC used in RISC processors: ARM, IBM Power, etc.
2 instructions:

Load-linked
Store-conditional

Slightly different from traditional loads and stores
Additional effects on CPU state

Can act as a pair atomically without holding the bus until completion

2 / 14

COMP35112 | Department of Computer Science

Load-Linked
ldl %r1, %r2

%r1 ← *(%r2)

In addition, core keeps some state for the ldl:
Sets load linked flag
Saves the address (from %r2) in the locked address register

3 / 14

COMP35112 | Department of Computer Science

Store-Conditional
stc %r1, %r2

Tries to do *(%r2) ← %r1

Only succeeds if load linked flag set
Afterwards value of load linked flag returned in %r1
And the load link flag is cleared

4 / 14

COMP35112 | Department of Computer Science

The Load-Linked Flag

Load linked flag is cleared if another core writes to the locked
address

5 / 14

COMP35112 | Department of Computer Science

The Load-Linked Flag

Load linked flag is cleared if another core writes to the locked
address

Memory

@12

0

LL/SC Flag

Core 1 Core 2
0

6 / 14

COMP35112 | Department of Computer Science

The Load-Linked Flag

Load linked flag is cleared if another core writes to the locked
address

Memory

@12

0→1

Core 1 Core 2
0

LL @12

7 / 14

COMP35112 | Department of Computer Science

The Load-Linked Flag

Load linked flag is cleared if another core writes to the locked
address

Memory

@12

1→0
Core 1 Core 2

0

Store @12

8 / 14

COMP35112 | Department of Computer Science

The Load-Linked Flag

Load linked flag is cleared if another core writes to the locked
address

Memory

@12

Core 1 Core 2
0

SC @12

0

9 / 14

COMP35112 | Department of Computer Science

The Load-Linked Flag

Load linked flag is cleared if another core writes to the locked
address

Memory

@12

Core 1 Core 2
0

SC @12

0

Other events clearing the flag: context switches, interruptions
Allows to be sure that a ll/sc pair executed atomically with respect
to the locked address

9 / 14

COMP35112 | Department of Computer Science

Our Semaphore with LL/SC
/* Address of the lock in %r2 */

loop: ldl %r1, %r2
 comp $0, %r1 /* S == 0 (semaphore already taken)? */
 beq loop /* if so, try again */
 mov $0, %r1 /* looks like it's free, prepare to take the semaphore */
 stc %r1, %r2 /* Try to take it */
 cmp $1, %r1 /* Did the write succeed? */
 bne loop /* If not, someone beat us to it... try again */

 /* critical section here... */

 st $1, %r2 /* release the semaphore with a simple store */

10 / 14

COMP35112 | Department of Computer Science

Our Semaphore with LL/SC
/* Address of the lock in %r2 */

loop: ldl %r1, %r2
 comp $0, %r1 /* S == 0 (semaphore already taken)? */
 beq loop /* if so, try again */
 mov $0, %r1 /* looks like it's free, prepare to take the semaphore */
 stc %r1, %r2 /* Try to take it */
 cmp $1, %r1 /* Did the write succeed? */
 bne loop /* If not, someone beat us to it... try again */

 /* critical section here... */

 st $1, %r2 /* release the semaphore with a simple store */

Highlighted code executes atomically with respect to the memory
location
pointed by %r2

Any write to that location/interrupt/context switch during the
atomic part will lead to stc failing

11 / 14

COMP35112 | Department of Computer Science

The Power of LL/SC

Single atomic RMW instructions such as tas atomically combine load
(R) and store (W)
operations, and a potential in-register update (M)

12 / 14

COMP35112 | Department of Computer Science

The Power of LL/SC

Single atomic RMW instructions such as tas atomically combine load
(R) and store (W)
operations, and a potential in-register update (M)
The code starting with LL and ending with SC is not atomic in absolute

Even for a LL directly followed by a LC

12 / 14

COMP35112 | Department of Computer Science

The Power of LL/SC

Single atomic RMW instructions such as tas atomically combine load
(R) and store (W)
operations, and a potential in-register update (M)
The code starting with LL and ending with SC is not atomic in absolute

Even for a LL directly followed by a LC
However LL/SC allows to determine if anything between the LL
and the SC has executed
atomically or not, with respect to the
corresponding address

12 / 14

COMP35112 | Department of Computer Science

Spinlock

All our implementations of wait(S) use a busy loop
Called busy waiting or spinning
Spinlocks

13 / 14

COMP35112 | Department of Computer Science

Spinlock

All our implementations of wait(S) use a busy loop
Called busy waiting or spinning
Spinlocks

Hurt performance when contended

13 / 14

COMP35112 | Department of Computer Science

Spinlock

All our implementations of wait(S) use a busy loop
Called busy waiting or spinning
Spinlocks

Hurt performance when contended
Sleeping would be more efficient

Such higher-level locks can be called mutexes
Requires OS support

13 / 14

COMP35112 | Department of Computer Science

Summary

Atomic RMW instructions: inefficient/hard to implement in some
situations
LL/SC address these problems

Atomic execution with respect to a particular memory location
Without locking the cache coherence bus

Next lecture: can we use such atomic instructions,
instead of locks?

14 / 14

