
COMP35112 Chip Multiprocessors

Programming with Locks and
Barriers

Pierre Olivier

1 / 40

COMP35112 | Department of Computer Science

Synchronisation Mechanisms

In a multithreaded program, threads rarely execute completely
independently:

In many scenarios they need to wait for each other and to
communicate
by accessing shared data

2 / 40

COMP35112 | Department of Computer Science

Synchronisation Mechanisms

In a multithreaded program, threads rarely execute completely
independently:

In many scenarios they need to wait for each other and to
communicate
by accessing shared data
Brings the need for synchronisation mechanisms

2 / 40

COMP35112 | Department of Computer Science

Synchronisation Mechanisms

In a multithreaded program, threads rarely execute completely
independently:

In many scenarios they need to wait for each other and to
communicate
by accessing shared data
Brings the need for synchronisation mechanisms

In this lecture we'll cover:
Barriers: simple mechanism letting threads wait for each other
Locks allowing threads to safely access shared data
Condition variables for event signalling between threads

2 / 40

BarriersBarriers

3 / 403 / 40

COMP35112 | Department of Computer Science

Barriers

Running Waiting

Running Waiting

Running Waiting

Running

Resumes running

Resumes running

Resumes running

Resumes running

Thread 1

Thread 2

Thread 3

Thread 4

Time

Barrier

4 / 40

COMP35112 | Department of Computer Science

Barriers

Running Waiting

Running Waiting

Running Waiting

Running

Resumes running

Resumes running

Resumes running

Resumes running

Thread 1

Thread 2

Thread 3

Thread 4

Time

Barrier

A barrier is where a number of threads "meet up"
When all threads have reached it, they can all proceed

5 / 40

COMP35112 | Department of Computer Science

Barriers

Running Waiting

Running Waiting

Running Waiting

Running

Resumes running

Resumes running

Resumes running

Resumes running

Thread 1

Thread 2

Thread 3

Thread 4

Step 1

Barrier

Step 2

Very natural when threads are used to implement data parallelism
Want the whole answer from this step before proceeding to the
next step

6 / 40

COMP35112 | Department of Computer Science

Barriers

Running Waiting

Running Waiting

Running Waiting

Running

Resumes running

Resumes running

Resumes running

Resumes running

Thread 1

Thread 2

Thread 3

Thread 4

Iteration 1

Barrier

Iteration 2

Very natural when threads are used to implement data parallelism
Want the whole answer from this step before proceeding to the
next step

Would also use when data dependence limits loop parallelisation
pthread_barrier_t allows multiple use!

7 / 40

COMP35112 | Department of Computer Science

Barrier Example

Running Waiting

Running

Thread 1

Thread 2

Time
Barrier

Running Waiting

Running

Running Waiting

Running

Barrier

...

Force thread 2 to execute for a longer time than thread 1 at each
iteration

8 / 40

COMP35112 | Department of Computer Science

Barrier Example

Running Waiting

Running

Thread 1

Thread 2

Time
Barrier

Print thread n
reached barrier

Running Waiting

Running

Running Waiting

Running

Barrier

...

Force thread 2 to execute for a longer time than thread 1 at each
iteration

9 / 40

COMP35112 | Department of Computer Science

Barrier Example

Running Waiting

Running

Thread 1

Thread 2

Time
Barrier

Print thread n
reached barrier

Running Waiting

Running

Running Waiting

Running

Print thread n
passed barrier

Barrier

...

Force thread 2 to execute for a longer time than thread 1 at each
iteration

10 / 40

COMP35112 | Department of Computer Science

#define ITERATIONS 10

typedef struct {
 int id;
 int spin_amount;
 pthread_barrier_t *barrier;
} worker;

Code Sandbox

void *thread_fn(void *data) {
 worker *arg = (worker *)data;
 int id = arg->id;
 int iteration = 0;

 while(iteration != ITERATIONS) {

 /* busy loop to simulate activity */
 for(int i=0; i<arg->spin_amount; i++);

 printf("Thread %d reached barrier\n", id);

 int r = pthread_barrier_wait(arg->barrier);
 if(r!=PTHREAD_BARRIER_SERIAL_THREAD && r) {
 perror("pthread_barrier_wait");
 exit(-1);
 }

 printf("Thread %d passed barrier\n", id);
 iteration++;
 }
 pthread_exit(NULL);
}

Barrier Example

11 / 40

https://olivierpierre.github.io/comp35112/lectures/08-locks-barriers/src/listing1.c
https://sandbox.cs50.io/?script=wget%20https%3A%2F%2Folivierpierre.github.io%2Fcomp35112%2Flectures%2F08-locks-barriers%2Fsrc%2Flisting1.c&window=editor&window=terminal

COMP35112 | Department of Computer Science

Code Sandbox

Barrier Example
#include <err.h> // for errx
/* ... */
#define T1_SPIN_AMOUNT 200000000
#define T2_SPIN_AMOUNT (10 * T1_SPIN_AMOUNT)

int main(int argc, char **argv) {
 pthread_t t1, t2;
 pthread_barrier_t barrier;

 worker w1 = {1, T1_SPIN_AMOUNT, &barrier};
 worker w2 = {2, T2_SPIN_AMOUNT, &barrier};

 if(pthread_barrier_init(&barrier, NULL, 2))
 errx(-1, ("pthread_barrier_init")); // equivalent of perror(msg); exit(-1);

 if(pthread_create(&t1, NULL, thread_fn, (void *)&w1) ||
 pthread_create(&t2, NULL, thread_fn, (void *)&w2))
 errx(-1, "pthread_create");

 if(pthread_join(t1, NULL) || pthread_join(t2, NULL))
 errx(-1, "phread_join");

 return 0;
}

12 / 40

https://olivierpierre.github.io/comp35112/lectures/08-locks-barriers/src/listing1.c
https://sandbox.cs50.io/?script=wget%20https%3A%2F%2Folivierpierre.github.io%2Fcomp35112%2Flectures%2F08-locks-barriers%2Fsrc%2Flisting1.c&window=editor&window=terminal

LocksLocks

13 / 4013 / 40

COMP35112 | Department of Computer Science

Locks: Motivational Example 1

Locks protect shared data
Why do so?

Cash machine example: cash withdrawal

14 / 40

COMP35112 | Department of Computer Science

Locks: Motivational Example 1

Locks protect shared data
Why do so?

Cash machine example: cash withdrawal

int total = get_total_from_account(); /* total funds in user account */
int withdrawal = get_withdrawal_amount(); /* amount user asking to withdraw */

/* check whether the user has enough funds in her account */
if(total < withdrawal)
 abort("Not enough money!");

/* The user has enough money, deduct the withdrawal amount from here total */
total -= withdrawal;
update_total_funds(total);

/* give the money to the user */
spit_out_money(withdrawal);

14 / 40

COMP35112 | Department of Computer Science

int total = get_total_from_account();
int withdrawal = get_withdrawal_amount();

if(total < withdrawal)
 abort("Not enough money!");

total -= withdrawal;
update_total_funds(total);

spit_out_money(withdrawal);

Locks: Motivational Example 1

15 / 40

COMP35112 | Department of Computer Science

int total = get_total_from_account();
int withdrawal = get_withdrawal_amount();

if(total < withdrawal)
 abort("Not enough money!");

total -= withdrawal;
update_total_funds(total);

spit_out_money(withdrawal);

Assume 2 transactions are
hapenning nearly at the same
time

E.g. shared credit card
account

Assume: total == 105,
withdrawal1 == 100,
withdrawal2 == 10

Should fail as (100+10)>105

Locks: Motivational Example 1

16 / 40

COMP35112 | Department of Computer Science

int total = get_total_from_account();
int withdrawal = get_withdrawal_amount();

if(total < withdrawal)
 abort("Not enough money!");

total -= withdrawal;
update_total_funds(total);

spit_out_money(withdrawal);

total == 105, withdrawal1 == 100,
withdrawal2 == 10

A possible scenario:
1. Threads get total in local variable,

both get 105
2. Threads check that 100 < 105 and
10 < 105

All good
3. Thread 1 updates:

total = 105 - 100 = 5

update_total_funds(5)

4. Slightly later thread 2 updates:
total = 105 - 10 = 95

update_total_funds(95)

Locks: Motivational Example 1

17 / 40

COMP35112 | D f C S i

int total = get_total_from_account();
int withdrawal = get_withdrawal_amount();

if(total < withdrawal)
 abort("Not enough money!");

total -= withdrawal;
update_total_funds(total);

spit_out_money(withdrawal);

total == 105, withdrawal1 == 100,
withdrawal2 == 10

A possible scenario:
1. Threads get total in local variable,

both get 105
2. Threads check that 100 < 105 and
10 < 105

All good
3. Thread 1 updates:

total = 105 - 100 = 5

update_total_funds(5)

4. Slightly later thread 2 updates:
total = 105 - 10 = 95

update_total_funds(95)

Locks: Motivational Example 1

Total withdrawal: 110, and there is
95 left on the account!

Free money 🤑

Race condition: operations on
shared state should not happen
at the same
time

17 / 40

COMP35112 | Department of Computer Science

Locks: Motivational Example 2

Consider the i++ statement
Could translate into machine code as:

1. load the current value of i from memory and copy it into a register
2. add one to the value stored into the register
3. store from the register to memory the new value of i

18 / 40

COMP35112 | Department of Computer Science

A possible scenario when 2 threads
execute i++:

Thread 1 Thread 2
l oad i (7) -
i ncr ement i (7 8)→ -
st or e i (8) -
- l oad i (8)
- i ncr ement i (8 9)→
- st or e i (9)

Locks: Motivational Example 2

Consider the i++ statement
Could translate into machine code as:

1. load the current value of i from memory and copy it into a register
2. add one to the value stored into the register
3. store from the register to memory the new value of i

19 / 40

COMP35112 | Department of Computer Science

Thread 1 Thread 2
l oad i (7) l oad i (7)
i ncr ement i (7 8)→ -
- i ncr ement i (7 8)→
st or e i (8) -
- st or e i (8)

Another possible scenario: Race
condition 🔥

Need locks to serialise access to
shared data, i.e. to ensure that
critical sections are executed
atomically

Locks: Motivational Example 2

Consider the i++ statement
Could translate into machine code as:

1. load the current value of i from memory and copy it into a register
2. add one to the value stored into the register
3. store from the register to memory the new value of i

20 / 40

COMP35112 | Department of Computer Science

Locks

Bits of code in our program where shared data is accessed/updated
are
called critical sections

21 / 40

COMP35112 | Department of Computer Science

Locks

Bits of code in our program where shared data is accessed/updated
are
called critical sections
Lock: synchronisation primitive enforcing limits on the execution of
a
critical section:

Amount of threads that can concurrently execute it (generally 1,
serialisation)
Atomicity: when a thread starts to run a critical section, it must
finish it before another thread can enter the critical section

21 / 40

COMP35112 | Department of Computer Science

Locks

Critical sections can be protected with
locks:
Only one thread can hold a given lock at a time
Holding the lock lets the thread enter and execute the
corresponding critical section

22 / 40

COMP35112 | Department of Computer Science

Locks

Critical sections can be protected with
locks:
Only one thread can hold a given lock at a time
Holding the lock lets the thread enter and execute the
corresponding critical section

Threads wishing to enter the critical section try to take the lock:
A thread attempting to take a free lock will get it
Other threads requesting the lock wait until the lock is released by
its
holder

22 / 40

COMP35112 | Department of Computer Science

Locks

Critical sections can be protected with
locks:
Only one thread can hold a given lock at a time
Holding the lock lets the thread enter and execute the
corresponding critical section

Running

Running

Thread 1

Thread 2

Time

lock

23 / 40

COMP35112 | Department of Computer Science

Locks

Critical sections can be protected with
locks:
Only one thread can hold a given lock at a time
Holding the lock lets the thread enter and execute the
corresponding critical section

Running Critical section

Running Waiting

Thread 1

Thread 2

Time

lock
try lock got lock

try lock lock already taken

24 / 40

COMP35112 | Department of Computer Science

Locks

Critical sections can be protected with
locks:
Only one thread can hold a given lock at a time
Holding the lock lets the thread enter and execute the
corresponding critical section

Running

Running

Thread 1

Thread 2

Time

lock
release lock

got lock

Critical section

Waiting Critical section

Running

try lock

25 / 40

COMP35112 | Department of Computer Science

Locks

Critical sections can be protected with
locks:
Only one thread can hold a given lock at a time
Holding the lock lets the thread enter and execute the
corresponding critical section

Running

Running

Thread 1

Thread 2

Time

lock
release lock

Critical section

Waiting Critical section

26 / 40

COMP35112 | Department of Computer Science

Pthreads Mutexes

Mutexes: mutual exclusion locks

#include <pthread.h>

pthread_mutex_t mutex;

void my_thread_function() {

 pthread_mutex_lock(&mutex);

 /* critical section here */

 pthread_mutex_unlock(&mutex);

}

27 / 40

COMP35112 | Department of Computer Science

Pthreads Mutexes

Mutexes: mutual exclusion locks

#include <pthread.h>

pthread_mutex_t mutex;

void my_thread_function() {

 pthread_mutex_lock(&mutex);

 /* critical section here */

 pthread_mutex_unlock(&mutex);

}

Important:
in the next examples we omit pthread functions return code
checking
for the sake of brevity, but note that almost all of them can fail!

27 / 40

COMP35112 | Department of Computer Science

Lock Usage Example

Bounded buffer: circular FIFO producer-consumer buffer

deposit extract

28 / 40

COMP35112 | D t t f C t S i

Code Sandbox

Lock Usage Example
typedef struct {
 int *buffer; // the buffer
 int max_elements; // size of the buffer
 int in_index; // index of the next free slot
 int out_index; // index of the next message to extract
 int count; // number of used slots
 pthread_mutex_t lock; // lock protecting the buffer
} bounded_buffer;

int init_bounded_buffer(bounded_buffer *b, int size) {
 b->buffer = malloc(size * sizeof(int));
 if(!b->buffer)
 return -1;

 b->max_elements = size;
 b->in_index = 0;
 b->out_index = 0;
 b->count = 0;
 pthread_mutex_init(&b->lock, NULL);
 return 0;
}

void destroy_bounded_buffer(bounded_buffer *b) {
 free(b->buffer);
}

29 / 40

https://olivierpierre.github.io/comp35112/lectures/08-locks-barriers/src/listing2.c
https://sandbox.cs50.io/?script=wget%20https%3A%2F%2Folivierpierre.github.io%2Fcomp35112%2Flectures%2F08-locks-barriers%2Fsrc%2Flisting2.c&window=editor&window=terminal

COMP35112 | Department of Computer Science

Code Sandbox

Lock Usage Example (continued)
void deposit(bounded_buffer *b, int message) {
 pthread_mutex_lock(&b->lock);

 int full = (b->count == b->max_elements);

 while(full) {
 // buffer is full, can't deposit! Release the lock and wait a bit
 // to give another thread a chance to extract an element
 pthread_mutex_unlock(&b->lock);
 usleep(100);
 pthread_mutex_lock(&b->lock);

 // is the buffer still full?
 full = (b->count == b->max_elements);
 }

 // perform deposit
 b->buffer[b->in_index] = message;
 b->in_index = (b->in_index + 1) % b->max_elements;
 b->count++;

 pthread_mutex_unlock(&b->lock);
}

30 / 40

https://olivierpierre.github.io/comp35112/lectures/08-locks-barriers/src/listing2.c
https://sandbox.cs50.io/?script=wget%20https%3A%2F%2Folivierpierre.github.io%2Fcomp35112%2Flectures%2F08-locks-barriers%2Fsrc%2Flisting2.c&window=editor&window=terminal

COMP35112 | Department of Computer Science

Code Sandbox

Lock Usage Example (continued)
int extract(bounded_buffer *b) {
 pthread_mutex_lock(&b->lock);

 int empty = !(b->count);

 while(empty) {
 // buffer is empty, nothing to extract! Release the lock and wait a bit
 // to give another thread a chance to deposit an element
 pthread_mutex_unlock(&b->lock);
 usleep(100);
 pthread_mutex_lock(&b->lock);

 // is the buffer still empty?
 empty = !(b->count);
 }

 // perform extract
 int message = b->buffer[b->out_index];
 b->out_index = (b->out_index + 1) %
 b->max_elements;
 b->count--;

 pthread_mutex_unlock(&b->lock);
 return message;
}

31 / 40

https://olivierpierre.github.io/comp35112/lectures/08-locks-barriers/src/listing2.c
https://sandbox.cs50.io/?script=wget%20https%3A%2F%2Folivierpierre.github.io%2Fcomp35112%2Flectures%2F08-locks-barriers%2Fsrc%2Flisting2.c&window=editor&window=terminal

COMP35112 | Department of Computer Science

typedef struct {
 int iterations;
 bounded_buffer *bb;
} worker;

void *deposit_thread_fn(void *data) {
 worker *w = (worker *)data;
 for(int i=0; i<w->iterations; i++) {
 deposit(w->bb, i);
 printf("[deposit thread] put %d\n", i);
 }
 pthread_exit(NULL);
}

void *extract_thread_fn(void *data) {
 worker *w = (worker *)data;
 for(int i=0; i<w->iterations; i++) {
 int x = extract(w->bb);
 printf("[extract thread] got %d\n", x);
 }
 pthread_exit(NULL);
} Code Sandbox

#define BUFFER_SIZE 100
int main(int argc, char **argv) {
 bounded_buffer b;
 pthread_t t1, t2;

 if(init_bounded_buffer(&b, BUFFER_SIZE)) {
 /* error */
 }

 worker w1 = {BUFFER_SIZE*2, &b};
 worker w2 = {BUFFER_SIZE*2, &b};

 pthread_create(&t1, NULL, deposit_thread_fn,
 (void *)&w1);
 pthread_create(&t2, NULL, extract_thread_fn,
 (void *)&w2);

 pthread_join(t1, NULL);
 pthread_join(t2, NULL);
 destroy_bounded_buffer(&b);
 return 0;
}

Lock Usage Example (continued)

32 / 40

https://olivierpierre.github.io/comp35112/lectures/08-locks-barriers/src/listing2.c
https://sandbox.cs50.io/?script=wget%20https%3A%2F%2Folivierpierre.github.io%2Fcomp35112%2Flectures%2F08-locks-barriers%2Fsrc%2Flisting2.c&window=editor&window=terminal

COMP35112 | Department of Computer Science

Omit the Locks and ...

33 / 40

COMP35112 | Department of Computer Science

Omit the Locks and ...

Madness ensues 🙃

33 / 40

COMP35112 | Department of Computer Science

Omit the Locks and ...

Madness ensues 🙃
Could have two threads in deposit() both writing to the same
element of
buffer

One value is lost

33 / 40

COMP35112 | Department of Computer Science

Omit the Locks and ...

Madness ensues 🙃
Could have two threads in deposit() both writing to the same
element of
buffer

One value is lost
Could then either increment in_index

Once: whole call of deposit() lost
Twice: spurious (old) value apparently deposited

33 / 40

COMP35112 | Department of Computer Science

Omit the Locks and ...

Madness ensues 🙃
Could have two threads in deposit() both writing to the same
element of
buffer

One value is lost
Could then either increment in_index

Once: whole call of deposit() lost
Twice: spurious (old) value apparently deposited

Similarly for two calls of extract()
Even problems between a call of deposit() and one of extract(), e.g.
both change count

33 / 40

COMP35112 | Department of Computer Science

Omit the Locks and ...

Madness ensues 🙃
Could have two threads in deposit() both writing to the same
element of
buffer

One value is lost
Could then either increment in_index

Once: whole call of deposit() lost
Twice: spurious (old) value apparently deposited

Similarly for two calls of extract()
Even problems between a call of deposit() and one of extract(), e.g.
both change count

Concurrency issues can be extremely hard to debug in
medium/large
scale programs

33 / 40

COMP35112 | Department of Computer Science

Code Sandbox

Omit the Locks and ...
/* BUGGY version of deposit, without locks */
void deposit(bounded_buffer *b, int message) {

 while (b->count == b->max_elements);

 b->buffer[b->in_index] = message;
 b->in_index = (b->in_index + 1) % b->max_elements;
 b->count++;
}

/* BUGGY version of extract, without locks */
int extract(bounded_buffer *b) {

 while (!(b->count));

 int message = b->buffer[b->out_index];
 b->out_index = (b->out_index + 1) % b->max_elements;
 b->count--;

 return message;
}

34 / 40

https://olivierpierre.github.io/comp35112/lectures/08-locks-barriers/src/listing3.c
https://sandbox.cs50.io/?script=wget%20https%3A%2F%2Folivierpierre.github.io%2Fcomp35112%2Flectures%2F08-locks-barriers%2Fsrc%2Flisting3.c&window=editor&window=terminal

Condition VariablesCondition Variables

35 / 4035 / 40

COMP35112 | Department of Computer Science

while(full) {
 pthread_mutex_unlock(&b->lock);
 usleep(100);
 pthread_mutex_lock(&b->lock);
 full = (b->count == b->max_elements);
}

while(full) {
 pthread_mutex_unlock(&b->lock);
 /* busy wait */
 pthread_mutex_lock(&b->lock);
 full = (b->count == b->max_elements);
}

Event Signalling

Sleeping or busy-waiting for the buffer to be non-full/non-empty is
suboptimal

With the usleep set to an arbitrary time, may sleep for a much longer
time
than needed
Without usleep, keep trying non-stop, monopolising the CPU

36 / 40

COMP35112 | Department of Computer Science

while(full) {
 pthread_mutex_unlock(&b->lock);
 usleep(100);
 pthread_mutex_lock(&b->lock);
 full = (b->count == b->max_elements);
}

Running holds lock

Running Waiting (another task runs)

Thread 1

Thread 2

Time

Running

sleep() sleep()

while(full) {
 pthread_mutex_unlock(&b->lock);
 /* busy wait */
 pthread_mutex_lock(&b->lock);
 full = (b->count == b->max_elements);
}

Running holds lock

Running Busy-waiting

Thread 1

Thread 2

Time

Running

Event Signalling

Sleeping or busy-waiting for the buffer to be non-full/non-empty is
suboptimal

37 / 40

COMP35112 | Department of Computer Science

Best of both worlds: thread
wakes up right when needed,
without monopolising
the CPU
by spinning

Running holds lock

Running Waiting (another task runs)

Thread 1

Thread 2

Time

Running

sleep() sleep()

Running holds lock

Running Busy-waiting

Thread 1

Thread 2

Time

Running

Running holds lock

Running Waiting

Thread 1

Thread 2

Time

Running

cond_wait()

cond_signal(

Condition Variables

38 / 40

COMP35112 | Department of Computer Science

void deposit(bounded_buffer *b, int message) {
 pthread_mutex_lock(&b->lock);

 int full = (b->count == b->max_elements);
 while(full) {
 // wait on condfull to be signalled
 // when the buffer becomes non-full
 pthread_cond_wait(&b->condfull, &b->lock);
 full = (b->count == b->max_elements);
 }

 b->buffer[b->in_index] = message;
 b->in_index = (b->in_index + 1) %
 b->max_elements;

 // signal condempty if buffer becomes
 // non-empty
 if(b->count++ == 0)
 pthread_cond_signal(&b->condempty);

 pthread_mutex_unlock(&b->lock);
}

Code Sandbox

int extract(bounded_buffer *b) {
 pthread_mutex_lock(&b->lock);

 int empty = !(b->count);
 while(empty) {
 // wait on condempty to be signalled
 // when the buffer becomes non-empty
 pthread_cond_wait(&b->condempty, &b->lock);
 empty = !(b->count);
 }

 int message = b->buffer[b->out_index];
 b->out_index = (b->out_index + 1) %
 b->max_elements;

 // signal condfull if buffer becomes
 // non-full
 if(b->count-- == b->max_elements)
 pthread_cond_signal(&b->condfull);

 pthread_mutex_unlock(&b->lock);
 return message;
}

Condition Variables

39 / 40

https://olivierpierre.github.io/comp35112/lectures/08-locks-barriers/src/listing4.c
https://sandbox.cs50.io/?script=wget%20https%3A%2F%2Folivierpierre.github.io%2Fcomp35112%2Flectures%2F08-locks-barriers%2Fsrc%2Flisting4.c&window=editor&window=terminal

COMP35112 | Department of Computer Science

Summary

Thread need to sync up and access shared data
Need for synchronisation mechanisms such as barriers, locks,
condition
variables

Shared memory multithreading opens up the risk of race conditions

When a shared resource is accessed by multiple threads at the
same time,
including at least a write access

Next lecture: more about locks

40 / 40

