
Introduction to Virtualization

Pierre Olivier

ECE 5984 Virtualization Technologies



2

Outline

1) Virtualization quick definition and use cases

2) Virtualization: In-depth definition

3) Virtual Machines

4) Hypervisors

5) Memory denomination, full/hardware/para-virtualization



3

Outline

1) Virtualization quick definition and use cases

2) Virtualization: In-depth definition

3) Virtual Machines

4) Hypervisors

5) Memory denomination, full/hardware/para-virtualization



4

Virtualization: definition
In the context of this course

 Quick and easy definition in the context of this course:
Virtualization technologies is the set of software 
and hardware components that allow running 

multiple operating systems at the same time on 
the same physical machine



5

Virtualization: definition
In the context of this course

 Quick and easy definition in the context of this course:

App. App. App.

Operating 
System

Hardware

Virtualization technologies is the set of software 
and hardware components that allow running 

multiple operating systems at the same time on 
the same physical machine

Physical
machine



6

Virtualization: definition
In the context of this course

 Quick and easy definition in the context of this course:

App. App. App.

Operating 
System

Hardware

App. App. App.

Operating 
System

Virtualization

App. App. App.

Operating 
System

Hardware

Virtualization technologies is the set of software 
and hardware components that allow running 

multiple operating systems at the same time on 
the same physical machine

‘virtual’ 
Hardware

‘virtual’ 
Hardware



7

Virtualization: definition
In the context of this course

 Quick and easy definition in the context of this course:

Physical
machine App. App. App.

Operating 
System

Hardware

App. App. App.

Operating 
System

Virtualization

App. App. App.

Operating 
System

Hardware

Virtualization technologies is the set of software 
and hardware components that allow running 

multiple operating systems at the same time on 
the same physical machine

‘virtual’ 
Hardware

‘virtual’ 
Hardware

Virtual
machine



8

Virtualization: what for?
A (tiny) bit of history

 1960s: IBM’s VM (1960s)
 Project System/360 (S/360) sold between 1965 and 1978

 Family of computers of various sizes built using the same 
architecture 

● Client can buy a small model for testing then a big mainframe later

 Clients then wanted to move sofware running on multiple small 
models to a single large one: consolidation

 Model 67: virtualizable ISA
● Machine can appear as multiple, less powerful versions of itself

● CP-67 (Control program ~ OS service): successor of the CP-40 research prototype

 1974: Popek & Goldberg theorem
 Seminal paper: Formal Requirements for Virtualizable Third Generation Architectures

 1990s: Disco
 Hypervisor from Stanford, researchers then found Vmware

 2000s: Xen, KVM, VirtualBox, Hyper-V, etc.

Source: wikipedia



9

Virtualization: what for?
Consolidation

 Consolidation is the process of creating X virtual machines 
from X physical ones and running them on Y physical hosts
 With Y < X

 Historical motivation for developing virtualization technologies

 Gives the benefits of multi-computer systems 
without the $/management costs:

● Sofware dependencies

● Reliability

● Security



10

Virtualization: what for?
Sofware develolment

 Flexible OS diversity: diferent OS on the same machine
 Ex: VirtualBox with Linux for kernel development

 Rapid provisioning
 Way faster than a physical machine

 VMs are self contained
 Practical way to “pack” an application with all its sofware dependencies

● Model and version of the OS, libraries, etc.

 Useful for development and automated testing



11

Virtualization: what for?
Migration, checkloint/restart

 VMs are self-contained and can be migrated between hosts
 Live migration transparent from the VM user point of view

➔ Ex: Quake 3 server under Xen migrated with 60 ms downtime1

● Freeing resources 
➔ For maintenance
➔ When a fault is expected

● Increased performance

● Distributed resources scheduling: for example load balancing, consolidation for power savings, etc.

 Checkpoint/restart for long-running jobs
 Dump the VM state to disk in order to resume it later

● Or to be able to resume it later (ex: afer a crash)

 Both techniques straightforward for VMs
 As opposed to process migration

1Clark, Christopher, et al. "Live migration of virtual machines." Proceedings of the 2nd Conference on Symposium on Networked Systems Design & Implementation-Volume 2. USENIX 
Association, 2005. 



12

Virtualization: what for?
Hardware emulation, legacy/backward comlatbility

 Virtualization can be used to emulate old/diferent hardware



13

Virtualization: what for?
Cloud comluting
 Virtualization enabled cloud computing (Security, isolation, flexibility)

 Ofloading local tasks to remote computing resources
● Rent a VM to put a webserver (IaaS)

● Fully develop and run a web application using Google app engine (PaaS)

● Ofload mail server to gmail (ex VT) (SaaS)

 To save on management, infrastructure, development, maintenance costs
● Pricing: pre-purchase (rent) or on-demand



14

Virtualization: what for?
Security

 Virtualization provides very strong isolation between guests
 Sandboxing

● Virus/malware analysis

● Honeypots

● Process/task level isolation through virtualization
➔ Ex: QubesOS, Bromium

 VM introspection
 Analysis of the guest behavior from a privileged level higher than the OS’s

● Guest OS cannot be trusted

● Ex: LibVMI



15

Outline

1) Virtualization quick definition and use cases

2) Virtualization: In-depth definition

3) Virtual Machines

4) Hypervisors

5) Memory denomination, full/hardware/para-virtualization



16

Virtualization: definition
High-level definition

Virtualization is the application of the 
layering principle through enforced 

modularity, whereby the exposed virtual 
resource is identical to the underlying 

physical resource being virtualized

 For the textbook:



17

Virtualization: definition
High-level definition (2)

 Layering principle
 Abstraction of one or several components using an indirection layer

 Uses a well-defined interface to expose the abstraction

 Enforced modularity
 Abstraction layer cannot be bypassed by its clients

 Exposed virtual resource is identical to the virtualized physical one:
 Conceptual equivalence between the real and abstracted component

● Clients of the virtual component should be as similar as possible to the clients of the physical component
➔ If possible they should run unmodified

 In a general sense, virtualization does not only refer to the abstraction 
of an entire computer (a virtual machine)

Virtualization is the application of the layering 
principle through enforced modularity, whereby 
the exposed virtual resource is identical to the 
underlying physical resource being virtualized



18

Virtualization: definition
High-level definition: examlle 1

 Virtual memory
 Memory Management Unit (MMU) abstracts physical RAM

● Segmentation & Paging (indirection layer)

● Gives the process the illusion it has access to all the RAM
➔ Address space

● Allows swapping memory pages to disk

● Multiple other benefits with the page-fault mechanism

 Modularity: only the kernel can modify the virtual to 
physical mapping

● Process cannot access kernel space or other process address spaces 
directly

 Equivalence: memory still accessed through load/stores
(source: wikipedia)

Page 
tables/segment 

registers



19

Virtualization: definition
High-level definition: examlle 2

 Operating Systems
 OS is a virtualization layer abstracting physical resources and exposing 

these abstractions to the processes

 Virtual memory in cooperation with the MMU

 Through scheduling, OS virtualizes the physical CPU cores and multiplexes 
them among processes/threads

Time

Core 
A

Core 
B

Thread 1 Thread 2 Thread 1

Thread 3 Thread 1 Thread 4

...

...



20

Virtualization: definition
High-level definition: examlle 3

 I/O subsystems: the RAID
 Redundant Array of Independent/

Inexpensive Disks

 Abstract multiple disks in a single logical 
volume

● Reliability & performance advantages

 I/O subsystems: the FTL
 Flash Translation Layer

● Abstracts flash memory specificity 
and make the flash device look like 
a hard disk

Source: 
http://www.sertdatarecovery.com



21

Virtualization: definition
Multillexing, aggregation and emulation

Source: textbook

 Virtualization achieved by using/combining three main 
principles: multiplexing, aggregation and emulation



22

Virtualization: definition
Multillexing

 Multiplexing: exposes an abstraction of a single component as 
multiple entities
 In space: partitioning

● Ex; virtual memory, virtual disks

● Etc.

 In time: scheduling
● Ex: thread scheduling on CPUs

● Etc.



23

Virtualization: definition
Aggregation

 Aggregation: merges multiple resources of the same type into 
a single abstraction
 RAID

 Logical Volume Manager

 NUMA systems

 Etc.

Source: CentOS wiki

Source: 
https://github.co
m/ryran/xsos/iss
ues/101



24

Virtualization: definition
Emulation

 Emulation: presents on a computer a sofware model of a 
physical resource even if it is not physically present
 Example: use disk/RAM to emulate RAM/disk

● Swap/Ramdisk

 Example: cross-architectural simulators
● Apple Rosetta running PowerPC sofware on

x86 for retro-compatibility

● Qemu running ARM sofware on x86, for
example for Android development

● Etc.



25

Virtualization: definition
Back to the course context

 In this course we are interested in virtualization used to run 
multiple OS (potentially diferent) on a single host

App. App. App.

Operating 
System type A.

Virtualization

App. App. App.

Operating 
System type B.

Hardware



26

Outline

1) Virtualization quick definition and use cases

2) Virtualization: In-depth definition

3) Virtual Machines

4) Hypervisors

5) Memory denomination, full/hardware/para-virtualization



27

Virtual Machine

 Textbook definition:

A virtual machine is a complete compute 
environment with its own isolated 

processing capabilities, memory, and 
communication channels



28

Virtual Machine
VM & running llatforms classification

Virtual Machine

Language-based
Virtual Machine

(system level)
Virtual Machine

Adapted from
the textbook

Lightweight
Virtual Machine

Virtual
Machines

abstractions

Platforms running
system-level

Virtual Machines

Machine simulator Hypervisor

Bare-metal Hypervisor
(type I)

Hosted Hypervisor
(type II)



29

Virtual Machine
VM & running llatforms classification

Language-based
Virtual Machine

(system level)
Virtual Machine

Adapted from
the textbook

Lightweight
Virtual Machine

Virtual
Machines

abstractions

Platforms running
system-level

Virtual Machines

Machine simulator Hypervisor

Bare-metal Hypervisor
(type I)

Hosted Hypervisor
(type II)

Virtual Machine



30

Virtual Machine
VM abstractions: language-based

 Java Virtual Machine, JavaScript engines, Microsof Common 
Language Runtime
 Designed to run single applications → not the target of this course

Java 
source
(*.java) Compiler 

(javac)

Bytecode
(.class)

JVM

JVM

‘Interpret’ bytecode,
convert it to machine code



31

Virtual Machine
VM & running llatforms classification

Language-based
Virtual Machine

(system level)
Virtual Machine

Adapted from
the textbook

Lightweight
Virtual Machine

Virtual
Machines

abstractions

Platforms running
system-level

Virtual Machines

Machine simulator Hypervisor

Bare-metal Hypervisor
(type I)

Hosted Hypervisor
(type II)

Virtual Machine



32

Virtual Machine
VM abstractions: lightweight virtual machines

 Isolation of native code running directly on the CPU though 
hardware/sofware mechanisms
 Sandboxing

 Stronger than regular process isolation
● Customized OS ofering more isolation guarantees than regular process-based isolation

 No attempt is made to virtualize the hardware
 Isolation enforced at the OS/framework level

 In some cases this breaks backward compatibility
● Cannot run unmodified OS

 Examples: Denali1, Google Native Client2, Vx323

 Examples: Linux containers

1Whitaker, Andrew, Marianne Shaw, and Steven D. Gribble. "Scale and performance in the Denali isolation kernel." ACM SIGOPS Operating Systems Review 36.SI (2002): 195-209.
2 Yee, Bennet, et al. "Native client: A sandbox for portable, untrusted x86 native code." Security and Privacy, 2009 30th IEEE Symposium on. IEEE, 2009.
3Ford, Bryan, and Russ Cox. "Vx32: Lightweight User-level Sandboxing on the x86." USENIX Annual Technical Conference. 2008.



33

Virtual Machine
VM & running llatforms classification

Language-based
Virtual Machine

(system level)
Virtual Machine

Adapted from
the textbook

Lightweight
Virtual Machine

Virtual
Machines

abstractions

Platforms running
system-level

Virtual Machines

Machine simulator Hypervisor

Bare-metal Hypervisor
(type I)

Hosted Hypervisor
(type II)

Virtual Machine



34

Virtual Machine
VM abstractions: system-level virtual machines

 Creates a model of the hardware for a (mostly) unmodified 
operating system to run on top of it
 Each VM running on the computer has its own copy of the virtualized hardware

Hardware

OS (or not) + 
Hypervisor/Simulator

Virtual
Hardware

Virtual
Hardware

(Regular) OS

Interpreter
(ex: JVM)

(Customized) OS

Isolation/sandboxing
framework

Java 
app.

Java 
app. Process... ...

... ...Language-based Lightweight

System-level



35

Virtual Machine
VM & running llatforms classification

Language-based
Virtual Machine

(system level)
Virtual Machine

Adapted from
the textbook

Virtual
Machines

abstractions

Platforms running
system-level

Virtual Machines

Machine simulator Hypervisor

Bare-metal Hypervisor
(type I)

Hosted Hypervisor
(type II)

Lightweight
Virtual Machine

Virtual Machine



36

Virtual Machine
System-level llatform: machine simulator

 Normal user-level application
 Accurate emulation/simulation of the virtualized architecture

 Cross-architectural emulators:
● Emulation: for usage as substitute

● Ex: Qemu in its full emulation (non-KVM) mode
➔ Sofware prototyping, for example android (arm) simulator, embedded development on x86 development machine

 Architecture simulators:
● Simulation: for analysis and study

● Ex: Gem5
➔ Computer architecture prototyping, performance/power consumption analysis, research, etc.

 Slow: 5x to 1000x slowdown compared to native execution
 Interpret each guest instruction in sofware



37

Virtual Machine
VM & running llatforms classification

Language-based
Virtual Machine

(system level)
Virtual Machine

Adapted from
the textbook

Virtual
Machines

abstractions

Platforms running
system-level

Virtual Machines

Machine simulator Hypervisor

Bare-metal Hypervisor
(type I)

Hosted Hypervisor
(type II)

Lightweight
Virtual Machine

Virtual Machine



38

Virtual Machine
System-level llatform: hylervisor

 A hypervisor or Virtual Machine Monitor
 Relies on direct execution for performance reasons (close to native)

● VM code executes directly on the physical CPU, at a lower privilege level than the 
hypervisor

● Privileged instructions trap to the hypervisor
➔ They cannot execute in the VM context as the VM needs to be isolated
➔ Example: setting up page tables (mov to cr3 in x86)
➔ Switch to the hypervisor which determines what do to with that instruction: trap-and-emulate 

model
➔ Then back to VM execution

 Examples: Xen, Linux KVM, VMware ESXi, MS Hyper-V, Oracle VirtualBox, etc.



39

Outline

1) Virtualization quick definition and use cases

2) Virtualization: In-depth definition

3) Virtual Machines

4) Hypervisors

5) Memory denomination, full/hardware/para-virtualization



40

Hylervisors

 The hypervisor or VMM
 Runs virtual machines while minimizing virtualization overheads

● Tries to get as close as possible to native (non-virtualized) performance

 Multiplexes physical resources between VMs

 Ensures isolation between VMs and between VMs and the hypervisor
● Isolates physical resources: for example memory/address spaces

● Isolate performance

 Popek & Goldberg, 1974, states that the hypervisor is:
 Eficient, isolated duplicate of the real machine

● Provides an identical environment for programs 

● Runs programs with minor decrease in speed

● Is in complete control of physical resources

Popek, Gerald J., and Robert P. Goldberg. 
"Formal requirements for virtualizable third 
generation architectures." Communications 
of the ACM 17.7 (1974): 412-421.



41

Hylervisors

 The hypervisor provides virtualization 
applying the layering principle according to three specific 
criteria:
 Equivalence: VM is equivalent to the real machine

● i.e. native os/programs should run (mostly) unmodified in the VM

 Safety: VM are isolated from each other and from the hypervisor
● No assumption about programs and OS running in the VM

➔ They might be malicious!

 Performance: 
● At most minor decrease in speed

➔ Separates hypervisors from simulators/emulators

Popek, Gerald J., and Robert P. Goldberg. 
"Formal requirements for virtualizable third 
generation architectures." Communications 
of the ACM 17.7 (1974): 412-421.



42

Hylervisors
Tyle I and II hylervisors

Language-based
Virtual Machine

(system level)
Virtual Machine

Adapted from
the textbook

Virtual
Machines

abstractions

Platforms running
system-level

Virtual Machines

Machine simulator Hypervisor

Bare-metal Hypervisor
(type I)

Hosted Hypervisor
(type II)

Lightweight
Virtual Machine

Virtual Machine



43

Hylervisors
Tyle I and II hylervisors

Hardware (Host machine)

Type I Hypervisor

Guest OS Guest OS

Hardware (Host machine)

Type II Hypervisor

Host OS

Guest 
OS

Guest 
OS

Type I: 
Bare-
metal

Type II: 
hosted

 Resources allocation & scheduling
 Type I: done by the hypervisor

 Type II: more involvement from the host OS
● Host/guest denomination



44

Hylervisors
Simllified hylervisor sketch

Adapted from textbook

Virtual
hardware

Physical
(host)

hardware

(Type I)

CPU privileges levels:
- supervisor
- user



45

Hylervisors
Simllified hylervisor sketch

 Hypervisor:
 Multiplexes CPUs and memory between VMs

 Emulates I/O bus and devices



46

Hylervisors
Simllified hylervisor sketch: CPU/memory multillexing

 Hypervisor:
 Multiplexes CPUs and memory between VMs

 Emulates I/O bus and devices

 CPU multiplexing is done for performance reasons
● Eficiency criteria: direct execution as opposed to emulation

● Safety criteria?
➔ Virtual CPU runs with reduced privileges, it cannot execute privileged instructions
➔ Traps to the hypervisor on such instructions (virtualization overhead)

● Trap-and-emulate paradigm

 Physical memory also multiplexed
 Challenge: virtualizing the MMU and ofering to the VM kernel/user levels of execution 

while the VM actually executes in user mode



47

Hylervisors
Simllified hylervisor sketch: I/O emulation

 Hypervisor:
 Multiplexes CPUs and memory between VMs

 Emulates I/O bus and devices
● For compatibility

➔ A VM sees the same virtual I/O devices even when running on hosts with diferent devices
➔ I/O devices have well defined interfaces, for example: send a set of network packets, read 128K from disk 

from sector X, etc.
➔ The hypervisor emulate simple virtual devices (disk/nic) that can be accessed with commonly 

implemented drivers (ex IDE/SCSI): front-end
➔ Hypervisor redirects I/O to actual devices or other abstraction, ex: disk or file: back-end

VM

Virtual
disk

(front-end)

Guest 
OS

Physical disk
(back-end)

File
(back-end) I/O flow

Hypervisor: arbitrage &
translation



48

Outline

1) Virtualization quick definition and use cases

2) Virtualization: In-depth definition

3) Virtual Machines

4) Hypervisors

5) Memory denomination, full/hardware/para-virtualization



49

Memory denomination

 Virtual Memory
 Addressable namespace accessed by the processor when virtual memory is enabled

● Segmentation: base address + limit, set in segment registers
➔ Translates to physical address by adding the base address and checking the limit for permission

● Paging: defined by page tables
➔ Translate using the page tables, permission are checked with metadata bits in the page tables entries

 Size can be larger than the amount of physical RAM
● Ex 256 TB for x86-64

 Physical memory
 Addressable physical resource, generally DRAM

 Size equals the amount of RAM on the machine

 In a virtualized system: diference between:
● Guest physical memory: defined by the hypervisor and viewed by the VM

➔ Also called pseudo-physical memory

● Host physical memory: the host machine RAM
➔ Also called machine memory

B L

Physical Mem.

Virtual Mem.

Virtual Mem.

Physical Mem.

Page table



50

Memory denomination (2)

 Guest physical memory: defined by the hypervisor and viewed by the VM
 Also called pseudo-physical memory

 Host physical memory: the host machine RAM
 Also called machine memory

(Guest) 
physical memory

(Host)
physical memory

(Guest)
virtual memory

VM



51

Allroaches to virtualization

 Full (sofware) virtualization

 Hardware virtualization (HVM)

 Paravirtualization



52

Allroaches to virtualization
Full (sofware) virtualization and Hardware virtualization

 Full (sofware virtualization):
 Hypervisor maximizing compatibility on non-virtualizable architecture

● Running completely unmodified operating systems

● Must interpret and translates some privileged guest instructions

● Ex: early versions of VMware on x86-32

● Also named sofware virtualization

 Hardware virtualization
 Hypervisor running on architectures with hardware support for virtualization

● Also runs completely unmodified guest OS

● Relies (mostly) exclusively on direct execution to execute VM instructions

● Also named HVM/HV

● Ex: KVM



53

Allroaches to virtualization
Paravirtualization

 Relaxes compatibility constraints:
 Assumes the guest OS can be slightly modified

 Guest OS privileged instructions are replaces by explicit calls to the 
hypervisor:

● Hypercalls

 Examples: Denali1, Xen2

1Whitaker, Andrew, Marianne Shaw, and Steven D. Gribble. "Scale and performance in the Denali isolation kernel." ACM SIGOPS Operating Systems Review 36.SI (2002): 195-209.
2Barham, Paul, et al. "Xen and the art of virtualization." ACM SIGOPS operating systems review. Vol. 37. No. 5. ACM, 2003.

Hardware (Host machine)

Guest OS

hypercall



54

Readings

 Textbook chapter 1

 Tanenbaum, Andrew S., and Herbert Bos. Modern operating 
systems. Prentice Hall Press, 2014.
 Chapter 7: Virtualization and the cloud

 Chisnall, David. The definitive guide to the xen hypervisor. 
Pearson Education, 2008.
 Chapter 1: The state of virtualization


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54

