ECE 5984 Virtualization Technologies

Project Presentation

Pierre Olivier



1) Brief presentation of unikernels

)
2) HermitCore
3)
)

4) Project organization

Problem statement




1) Brief presentation of unikernels

w N

)
)
)
)

S




B Motivation: my website in the cloud

Regular Virtual Machine

Application /
Apache




B Motivation: my website in the cloud

Regular Virtual Machine

Application /
Apache

Libraries




B Motivation: my website in the cloud

Regular Virtual Machine

Application

Libraries

OS kernel










B Motivation: my website in the cloud

Application

Libraries

eeeeeeee



B Unikernel:

¢ Statically compiled application + libraries + thin OS layer running as a guest on top of an
hypervisor

¢ Single purpose: 1 application
¢ Single binary
¢ Single address space
® Shared by the application and the kernel, no privilege separation, system calls are function calls

¢ More info:

® http://unikernel.org/
® http://unikernel.org/files/2014-cacm-unikernels.pdf
® https://www.youtube.com/watch?v=24rvIB4_v4U&t=607s

B |nteresting benefits in terms of security, cost reduction, and performance


http://unikernel.org/
http://unikernel.org/files/2014-cacm-unikernels.pdf
https://www.youtube.com/watch?v=24rvIB4_v4U&t=607s

B One claim made by unikernel supporters is that systems calls
are fast

¢ Common function calls

¢ No ‘world switch’ between user space and kernel

B |nteresting paper studying the cost of system calls:

® Soares, Livio, and Michael Stumm. "FlexSC: Flexible system call scheduling
with exception-less system calls." Proceedings of the 9th USENIX conference
on Operating systems design and implementation (OSDI). USENIX

Association, 2010.



2) HermitCore

M <

1
)

)

)
B



B Unikernel originally dedicated to HPC

¢ Described in this paper:

® | ankes, Stefan, Simon Pickartz, and Jens Breitbart. "HermitCore: a unikernel for extreme scale
computing." Proceedings of the 6th International Workshop on Runtime and Operating Systems for
Supercomputers. ACM, 2016.

® http://www.hermitcore.org
¢ \Written in C, very simple codebase:
® ~10KLOC
® (Good candidate for a project
¢ Supports running on top of the following hypervisors:
® Qemu (and Qemu/KVM)
® Uhyve

= Custom minimal hypervisor ~2KLOC



http://www.hermitcore.org/

* File-system related

syscalls are forwarded
to the host OS
* HostFSisused

File-system Unikernel

syscalls

Application
C library: newlib
OpenMP/MPI, LWIP

HermitCore kernel

syscalls

Hardware




1

N

3

S

)
)
)
)

Problem statement




Problem statement

B Unikernels system calls are fast
¢ Common function calls, no world switch

¢ \Was never clearly demonstrated

B Most syscall intensive macro-benchmarks are file-system and
network intensive

¢ We will not consider network (LWIP is pretty slow by itself)

¢ HermitCore file system calls are forwarded to the host:

® The bottleneck is this forwarding process, will not see any performance improvement from
running a benchmark as a unikernel!



Problem statement

Project objective:

Implement a simple file-system within the
HermitCore unikernel

- To explore potential benefits from fast
system calls in FS intensive workloads

Unikernel

File-system
syscalls

Application
C library: newlib
OpenMP/MPI, LWIP

HermitCore kernel

Hardware




Solution design

B What does implementing a FS within HermitCore means?

¢ |mplement the FS syscall interface and define how files are stored, organized
and retrieved in/from the backing store

¢ Backing store (storage medium)?

® Strong advice: Implement the FS as a ramdisk

2 No driver to write, no need to virtualize the Host HDD

¢ Interface with the application

® HermitCore redirects the following syscalls to the host:

2 open, read, write, lseek, close

2 Change that to internal processing in HermitCore
® Add new system calls

2> creat, mkdir, rename, readlink, etc.




Recommended project steps

1) Being able to run a simple program

* Write a unikernel that opens a single file with O_CREAT, write something, read it, then close

2) Add directories

* Write a unikernel creating a directory with a few files in it then list the content of the directory

3) Scale up

* (Create and access thousands of files and directories

4) Macro-benchmarks & performance evaluation

e Port postmark to HermitCore
* Compare your file-system performance (postmark & micro-benchmarks) to

1) Regular HermitCore and/or

2) Native Linux
5) Additional functionalities
* Pre-charge the ramdisk before application execution

* QOtherideas?




1

w N

)
)
)
)

4) Project organization




Project organization

B Group work: can be accomplished in groups of 2 students max

B Timeline:
¢ Project assignment PDF released tomorrow
¢ ‘Getting started with HermitCore’ technical guide released today
¢ For next monday

® Reproduce all the items in the technical guide on your own

® Come up with a FS design
2 What are the system calls you will support, and a draft of what happen under the hood when each is executed

® \We'll review the designs together

B Results to hand by 2018-02-20 11:59PM:
¢ Source code, tests & performance evaluation programs
¢ Project report: 7 pages minimum

¢ 1 archive per group (i.e. 1 report & set of source files)



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

