
Project Presentation

Pierre Olivier

ECE 5984 Virtualization Technologies

2

Outline

1) Brief presentation of unikernels

2) HermitCore

3) Problem statement

4) Project organization

3

Outline

1) Brief presentation of unikernels

2) HermitCore

3) Problem statement

4) Project organization

4

Unikernels

 Motivation: my website in the cloud

5

Unikernels

 Motivation: my website in the cloud

6

Unikernels

 Motivation: my website in the cloud

7

Unikernels

 Motivation: my website in the cloud

8

Unikernels

 Motivation: my website in the cloud

9

Unikernels

 Motivation: my website in the cloud

unikernel

10

Unikernels

 Unikernel:
 Statically compiled application + libraries + thin OS layer running as a guest on top of an

hypervisor

 Single purpose: 1 application

 Single binary

 Single address space
● Shared by the application and the kernel, no privilege separation, system calls are function calls

 More info:
● http://unikernel.org/

● http://unikernel.org/files/2014-cacm-unikernels.pdf

● https://www.youtube.com/watch?v=24rvIB4_v4U&t=607s

 Interesting benefits in terms of security, cost reduction, and performance

http://unikernel.org/
http://unikernel.org/files/2014-cacm-unikernels.pdf
https://www.youtube.com/watch?v=24rvIB4_v4U&t=607s

11

Unikernels

 One claim made by unikernel supporters is that systems calls
are fast
 Common function calls

 No ‘world switch’ between user space and kernel

 Interesting paper studying the cost of system calls:
 Soares, Livio, and Michael Stumm. "FlexSC: Flexible system call scheduling

with exception-less system calls." Proceedings of the 9th USENIX conference
on Operating systems design and implementation (OSDI). USENIX
Association, 2010.

12

Outline

1) Brief presentation of unikernels

2) HermitCore

3) Problem statement

4) Project organization

13

HermitCore

 Unikernel originally dedicated to HPC
 Described in this paper:

● Lankes, Stefan, Simon Pickartz, and Jens Breitbart. "HermitCore: a unikernel for extreme scale
computing." Proceedings of the 6th International Workshop on Runtime and Operating Systems for
Supercomputers. ACM, 2016.

● http://www.hermitcore.org

 Written in C, very simple codebase:
● ~10KLOC

● Good candidate for a project

 Supports running on top of the following hypervisors:
● Qemu (and Qemu/KVM)

● Uhyve
➔ Custom minimal hypervisor ~2KLOC

http://www.hermitcore.org/

14

HermitCore

Hypervisor: qemu/KVM
or uhyve/KVM

Host OS

Hardware

Unikernel

Application
C library: newlib

OpenMP/MPI, LWIP

HermitCore kernelOther
syscalls

File-system
syscalls

● File-system related
syscalls are forwarded
to the host OS
● Host FS is used

15

Outline

1) Brief presentation of unikernels

2) HermitCore

3) Problem statement

4) Project organization

16

Problem statement

 Unikernels system calls are fast
 Common function calls, no world switch

 Was never clearly demonstrated

 Most syscall intensive macro-benchmarks are file-system and
network intensive
 We will not consider network (LWIP is pretty slow by itself)

 HermitCore file system calls are forwarded to the host:
● The bottleneck is this forwarding process, will not see any performance improvement from

running a benchmark as a unikernel!

17

Problem statement

Hypervisor: qemu/KVM
or uhyve/KVM

Host OS

Hardware

Unikernel

Application
C library: newlib

OpenMP/MPI, LWIP

HermitCore kernel

Other syscalls

File-system
syscalls

Project objective:
Implement a simple file-system within the
HermitCore unikernel
- To explore potential benefits from fast
system calls in FS intensive workloads

18

Solution design

 What does implementing a FS within HermitCore means?
 Implement the FS syscall interface and define how files are stored, organized

and retrieved in/from the backing store

 Backing store (storage medium)?
● Strong advice: Implement the FS as a ramdisk

➔ No driver to write, no need to virtualize the Host HDD

 Interface with the application
● HermitCore redirects the following syscalls to the host:

➔ open, read, write, lseek, close
➔ Change that to internal processing in HermitCore

● Add new system calls
➔ creat, mkdir, rename, readlink, etc.

19

Recommended project steps

1) Being able to run a simple program
● Write a unikernel that opens a single file with O_CREAT, write something, read it, then close

2) Add directories
● Write a unikernel creating a directory with a few files in it then list the content of the directory

3) Scale up
● Create and access thousands of files and directories

4) Macro-benchmarks & performance evaluation
● Port postmark to HermitCore
● Compare your file-system performance (postmark & micro-benchmarks) to

1) Regular HermitCore and/or

2) Native Linux

5) Additional functionalities
● Pre-charge the ramdisk before application execution
● Other ideas?

20

Outline

1) Brief presentation of unikernels

2) HermitCore

3) Problem statement

4) Project organization

21

Project organization

 Group work: can be accomplished in groups of 2 students max

 Timeline:
 Project assignment PDF released tomorrow

 ‘Getting started with HermitCore’ technical guide released today

 For next monday
● Reproduce all the items in the technical guide on your own

● Come up with a FS design
➔ What are the system calls you will support, and a draf of what happen under the hood when each is executed

● We’ll review the designs together

 Results to hand by 2018-02-20 11:59PM:
 Source code, tests & performance evaluation programs

 Project report: 7 pages minimum

 1 archive per group (i.e. 1 report & set of source files)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

