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Unikernels

 Unikernel:
 Statically compiled application + libraries + thin OS layer running as a guest on top of an 

hypervisor

 Single purpose: 1 application

 Single binary

 Single address space
● Shared by the application and the kernel, no privilege separation, system calls are function calls

 More info:
● http://unikernel.org/

● http://unikernel.org/files/2014-cacm-unikernels.pdf

● https://www.youtube.com/watch?v=24rvIB4_v4U&t=607s 

 Interesting benefits in terms of security, cost reduction, and performance

http://unikernel.org/
http://unikernel.org/files/2014-cacm-unikernels.pdf
https://www.youtube.com/watch?v=24rvIB4_v4U&t=607s
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Unikernels

 One claim made by unikernel supporters is that systems calls 
are fast
 Common function calls

 No ‘world switch’ between user space and kernel

 Interesting paper studying the cost of system calls:
 Soares, Livio, and Michael Stumm. "FlexSC: Flexible system call scheduling 

with exception-less system calls." Proceedings of the 9th USENIX conference 
on Operating systems design and implementation (OSDI). USENIX 
Association, 2010.
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HermitCore

 Unikernel originally dedicated to HPC
 Described in this paper:

● Lankes, Stefan, Simon Pickartz, and Jens Breitbart. "HermitCore: a unikernel for extreme scale 
computing." Proceedings of the 6th International Workshop on Runtime and Operating Systems for 
Supercomputers. ACM, 2016.

● http://www.hermitcore.org 

 Written in C, very simple codebase:
● ~10KLOC

● Good candidate for a project

 Supports running on top of the following hypervisors:
● Qemu (and Qemu/KVM)

● Uhyve
➔ Custom minimal hypervisor ~2KLOC

http://www.hermitcore.org/
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HermitCore

Hypervisor: qemu/KVM
or uhyve/KVM

Host OS

Hardware

Unikernel

Application
C library: newlib

OpenMP/MPI, LWIP

HermitCore kernelOther
syscalls

File-system
syscalls

● File-system related
syscalls are forwarded
to the host OS
● Host FS is used
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Problem statement

 Unikernels system calls are fast
 Common function calls, no world switch

 Was never clearly demonstrated

 Most syscall intensive macro-benchmarks are file-system and 
network intensive
 We will not consider network (LWIP is pretty slow by itself)

 HermitCore file system calls are forwarded to the host:
● The bottleneck is this forwarding process, will not see any performance improvement from 

running a benchmark as a unikernel!
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Problem statement

Hypervisor: qemu/KVM
or uhyve/KVM

Host OS

Hardware

Unikernel

Application
C library: newlib

OpenMP/MPI, LWIP

HermitCore kernel

Other syscalls

File-system
syscalls

Project objective:
Implement a simple file-system within the 
HermitCore unikernel
- To explore potential benefits from fast 
system calls in FS intensive workloads
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Solution design

 What does implementing a FS within HermitCore means?
 Implement the FS syscall interface and define how files are stored, organized 

and retrieved in/from the backing store

 Backing store (storage medium)? 
● Strong advice: Implement the FS as a ramdisk

➔ No driver to write, no need to virtualize the Host HDD

 Interface with the application
● HermitCore redirects the following syscalls to the host:

➔ open, read, write, lseek, close
➔ Change that to internal processing in HermitCore

● Add new system calls
➔  creat, mkdir, rename, readlink, etc.
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Recommended project steps

1) Being able to run a simple program
● Write a unikernel that opens a single file with O_CREAT, write something, read it, then close

2) Add directories
● Write a unikernel creating a directory with a few files in it then list the content of the directory

3) Scale up
● Create and access thousands of files and directories

4) Macro-benchmarks & performance evaluation
● Port postmark to HermitCore
● Compare your file-system performance (postmark & micro-benchmarks) to

1) Regular HermitCore and/or

2) Native Linux

5) Additional functionalities
● Pre-charge the ramdisk before application execution
● Other ideas?
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Project organization

 Group work: can be accomplished in groups of 2 students max

 Timeline:
 Project assignment PDF released tomorrow

 ‘Getting started with HermitCore’ technical guide released today

 For next monday
● Reproduce all the items in the technical guide on your own

● Come up with a FS design
➔ What are the system calls you will support, and a draf of what happen under the hood when each is executed

● We’ll review the designs together

 Results to hand by 2018-02-20 11:59PM:
 Source code, tests & performance evaluation programs

 Project report: 7 pages minimum

 1 archive per group (i.e. 1 report & set of source files)


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

