
The Popek and Goldberg Theorem

Pierre Olivier

ECE 5984 Virtualization Technologies

2

Outline

1) Introduction

2) Model

3) Theorem

4) Nested virtualization & hybrid VMs

5) Paging and the theorem

6) Theorem violations

3

Outline

1) Introduction

2) Model

3) Theorem

4) Nested virtualization & hybrid VMs

5) Paging and the theorem

6) Theorem violations

4

Popek & Goldberg theorem: introduction

 Paper published in 1974 in Communications of the ACM

Popek, Gerald J., and Robert P. Goldberg. "Formal requirements for virtualizable
third generation architectures." Communications of the ACM 17.7 (1974): 412-421.

 Defines the requirements for an ISA to be virtualizable
 ISA: Instruction set architecture (ex: x86-64, x86-32, aarch64, etc.)

 Virtualizable: a VMM can be constructed on that architecture in a way that an OS
running on the hardware can also run in a VM

 Original idea of the paper: show that some ISA are not
virtualizable
 DEC PDP-10 taken as a case study

5

Popek & Goldberg theorem: introduction

 Lack of popularity for virtualization at the time the paper was
published

 Later, VMs become popular (end of 90s)
 Intel & AMD explicitly designed ADM-V and Intel VT-X in the 2000s to meet the

Popek & Goldberg criteria
● Hardware support for x86-64 virtualization

 This is now a seminal paper on virtualization
 Can an ISA support a VMM that itself support arbitrary guests, relying

exclusively on direct execution

 We’ll also learn through this theorem the fundamental principles
behind hypervisor operation on virtualizable ISAs

6

Popek & Goldberg theorem: introduction

 We will explain the theorem as follows:
 Explain P&G simplified CPU model

● Simple hardware platform, but still representative of modern CPUs, as a support for the theorem

 Explain how a regular, non-virtualized, OS would run on that simplified CPU
model

 Give the theorem: what characteristics an ISA needs to exhibit in order to be able
to run a VMM and VMs

 Describe a VMM for that simplified CPU model
● Which properties it should satisfy to be an actual eficient VMM

● How it operates

 Give some examples of theorem violations (ISAs not virtualizable)

7

Outline

1) Introduction

2) Model

3) Theorem

4) Nested virtualization & hybrid VMs

5) Paging and the theorem

6) Theorem violations

8

The model
Simplified CPU definition

 Authors defines a simplified computer model to be the support
for the theorem

1) One processor with 2 execution modes: user and supervisor

2) Support for virtual memory implemented through segmentation
● Single segment: Base B, Limit L

● Virtual range [0, L[mapped to physical range [B, B + L[

● (no paging)

3) Physical memory is contiguous, starts at 0, size: SZ

Virtual address space

 Physical Memory

B B + L0
SZ

L0

9

The model
Simplified CPU definition (2)

 Authors defines a simplified computer model to be the support for the
theorem (continued)

4) CPU state: Processor Status Word (PSW): (M, B, L, PC)
● Execution level M = {s, u} (supervisor or user)
● Segment register (B, L)
● The current program counter: PC

● Instruction currently executed

5) CPU ofers support for saving PSW content in
memory MEM[0] and loading a new value
from MEM[1]

● Action of entering the OS following a trap

6) CPU ofers an instruction to load PSW
content from a location in memory

● Exiting the OS afer a trap processing

7) No I/O or interrupts for simplicity

user
supervisor

(OS)

trap

MEM[0]=PSW
PSW=MEM[1]

PSW=MEM[0]

Ti
m

e

Example of trap: system call ==
world switch

Kernel virtual address space

MEM[0] → Saved process state
MEM[1] → kernel state (trap entry point)

Exception/
Syscall
processing

10

The model
OS operation without VMM

 This simple model is necessary, and suficient, to run an OS
1) Kernel runs in M = s, applications run in M = u

2) Kernel sets trap entry point during initialization
● MEM[1] ← (M:s, B:0, L:SZ, PC:trap_entry_point)

3) Kernel allocates a contiguous range of physical memory for each
application defined by (B, L)

4) Kernel launches/resume apps with address space [B, B+L[, currently
executing PC:

● PSW ← (M:u, B:B, L:L, PC:PC)

5) At the trap entry point, kernel decodes the instruction MEM[0].PC,
determines the cause of the trap and takes appropriate actions

11

The model
VMM construction & requirements

Given a computer defined according to the model, under which
conditions can a VMM be constructed so that the VMM:
● can execute one or more VMs;
● is in complete control of the machine at all times;
● supports arbitrary, unmodified, and potentially malicious OS

designed for the same architecture; and
● be efficient and show at worst a small performance decrease?

 Research question posed by Popek & Goldberg:

12

The model
VMM construction & requirements (2)

 The VMM needs to comply with these criteria:
1) Equivalence

● VM is a duplicate of the underlying physical machine
● Program (application and OSes) behave similarly running natively and in the VM

● They run unmodified

2) Safety
● VMM in complete control of the hardware at all time
● No assumption on guests, they can be malicious
● VMM must enforce isolation

● Between VM and the VMM/hardware
● Between VM themselves

➢ No shared state

3) Performance
● Minimal decrease in a virtualized program execution speed

13

Outline

1) Introduction

2) Model

3) Theorem

4) Nested virtualization & hybrid VMs

5) Paging and the theorem

6) Theorem violations

14

The Popek & Goldberg Theorem

 A few definitions:
 Sensitive instructions

● Control sensitive: instruction updates the system state

● Behavior sensitive: instruction semantics depends on the value of the system state

 Instruction that are not sensitive are named innocuous instructions

 Privileged instructions
● Can only be executed in supervisor mode and traps when executed in user mode

Theorem:
For any conventional third-generation computer, a VMM may be
constructed if the set of sensitive instructions for that computer is
a subset of the set of privileged instructions

{control-sensitive} {∪ behavior-sensitive} {⊆ privileged}

15

The Popek & Goldberg Theorem (2)

 X86 instruction examples
 Privileged instruction: HLT

● Traps if %cpl != 0

 Control sensitive: LGDT
● Controls x86 segments

 Behavior sensitive: POPF
● Load status (state) register with data from the stack

https://www.intel.com/content/dam/www/public
/us/en/documents/manuals/64-ia-32-architectur
es-sofware-developer-instruction-set-reference-
manual-325383.pdf

Privileged

Innocuous

Sensitive

Virtualizable
ISA

Privileged

Innocuous

Privileged

Innocuous

Sensitive

Non-virtualizable
ISA

Theorem in other words: all sensitive
instructions need to trap in user mode
for the ISA to be virtualizable

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf

16

The Popek & Goldberg Theorem
VMM operation

 {control-sensitive} {∪ behavior-sensitive} {⊆ privileged}

 Converse holds too: if the criteria is not met, a VMM cannot be
constructed for that architecture

➔If a control-sensitive instruction does not trap, any guest can
modify the system state without supervision/check from the VMM
- For example a guest OS installing an arbitrary page table

● With trap and emulate (direct execution) the guest OS runs in user
mode
➔If a behavior sensitive instruction does not trap:

- Guest OS instruction executed with user-level semantics (loss of
equivalence)

17

The Popek & Goldberg Theorem
VMM operation

 Under these conditions, VMM operates as follows:

1) Only the VMM runs in supervisor mode

● Guest OS runs in user mode!
● VMM allocates contiguous physical memory for himself,

never mapped by guests

Hardware

Non-virtualized environment Virtualized environment

Operating System

Application

Hardware

Operating System

Application

Virtual Machine Monitorsupervisor

user
CPU privilege

level view:

18

The Popek & Goldberg Theorem
VMM operation (2)

 Under these conditions, VMM operates as follows (continued):

2) VMM allocates contiguous physical memory for VMs

● Each machine gets a range defined by addr0 and memsize

Memory view: VM2VM1VMM

(adapted from
textbook)

Host-physical memory

addr0VM1 memsizeVM1

addr0VM2 memsizeVM2

19

The Popek & Goldberg Theorem
VMM operation (3)

 Under these conditions, VMM operates as follows (continued):

3) VMM keeps in memory the CPU state for each VM, vPSW

● Consists of (M, B, L, PC)
➔M: execution mode the VM thinks it’s running on: vm-supervisor vs vm-guest

Memory view: VM2VM1VMM

(adapted from textbook)

Host-physical memory

addr0 memsize

vPSW.B vPSW.L

Guest-physical memory

Virtual memory of a VM’ process/OS

vPSW.PC

20

The Popek & Goldberg Theorem
VMM operation (4)
 Under these conditions, VMM operates as follows (continued):

 VMM resumes VM execution by loading the hardware PSW ← (M’, B’, L’, PC’)

● M’ ← u
● B’ ← addr0 + vPSW.B
● L’ ← min(vPSW.L, memsize – vPSW.B)

➔The min ensures that a potentially malicious VM cannot access memory above the limit defined by the
VMM

● PC’ ← vPSW.PC

Memory view: VM2VM1VMM Host-physical memory

addr0 memsize

vPSW.B vPSW.L

Guest-physical memory

Virtual memory of a VM’ process/OS

PC’ = vPSW.PC

B’ ← addr0 + vPSW.B

L’ ← min(vPSW.L, memsize – vPSW.B)

21

The Popek & Goldberg Theorem
VMM operation (5)

 Under these conditions, VMM operates as follows (continued):

5) VMM update vPSW.PC ← PSW.PC on every trap

● Note that any try by the VM to modify M, B or L will trap
➔Theorem hypothesis assumes all control-sensitive instruction are also privileged

6) Next, VMM emulates the semantics of the instruction that trapped

● If guest OS caused the trap (vPSW = s), VMM emulates according to the ISA
➔Ex: if the guest OS is trying to update the segment register, the VMM update vPSW.B and

vPSW.L
- Hardware PSW.L and PSW.B will be set accordingly when we return back to VM execution:
PSW.B ← addr0 + vPSW.B and PSW.L ← min(vPSW.L, memsize – vPSW.B)

➔Then the VMM ensures the VM will resume at the next instruction: vPSW.PC++
➔Then the VM resumes execution by loading PSW

user supervisor user
Guest execution

mode

Time

VMM instruction emulation

22

The Popek & Goldberg Theorem
VMM operation (6)

 Under these conditions, VMM operates as follows (continued):

6) If guest application caused the trap (vPSW = u), VMM emulates according to the ISA

➔Application is doing a syscall or something illegal: should be handled by the
guest OS

➔MEM[addr0] ← vPSW
➢Save guest application state in the host-physical location of guest-physical
MEM[0]

➔vPSW ← MEM[addr0 + 1] load guest OS state (OS entry point) from memory
➔Resumes VM (in guest OS mode based on the updated vPSW)

user supervisor user
Guest execution

mode

Time

VMM instruction emulation

23

The Popek & Goldberg Theorem
VMM operation (7)

 Under these conditions, VMM operates as follows (continued):

7) According to the theorem hypothesis, all instruction updating the system state (control-
sensitive) are privileged, so they will trap

● Includes instructions updating the virtual to physical mapping
➔Each of these needs to be checked by the VMM to ensure safety (isolation)
➔Each of these needs to be emulated to give each VM the illusion of exclusive and full

access to physical memory

VM2VM1VMM
Host-physical

memory

addr0 memsize

B L

Guest-physical
memory

Virtual memory of a
VM’ process/OS

1) Guest OS says:
PSW.B ← B; PSW.L ← L
2) Traps to the VMM which update vPSW
then update the hardware:
PSW.B ← addr0 + B;
PSW.L = min(L, addr0+memsize)

The MMU is transparently configured diferently than
what the guest OS asks → these instructions need to
trap

24

The Popek & Goldberg Theorem
VMM operation (8)

 Under these conditions, VMM operates as follows (continued):

7) According to the theorem hypothesis, all instruction updating the system state (control-
sensitive) are privileged, so they will trap (continued)

● Includes user / supervisor transition instructions
➔Each of these needs to be tracked by the VMM

- to keep M = u at all times in the VM in to ensure safety: VMM in complete control at all times
- to correctly emulate privileged instruction (behavior-sensitive) according to the current
guest privileged level (guest-user or guest-supervisor) to ensure equivalence

8) Still according to the hypothesis, behavior-sensitive instruction will also trap

● Ex: reading PSW.M or PSW.B
➔Remember than the actual values are set by the VMM to something diferent than what the

guest OS think they are
➔Need to be emulated by the VMM otherwise this will lead to programs behaving diferently

on bare-metal vs virtualized: equivalence requirements

25

The Popek & Goldberg Theorem
Counter examples

 Control-sensitive unprivileged instructions
 Update to the system state that does not trap!

● Ex: unprivileged switch from supervisor to user mode with JRST1 “return to user” in DEC PDP-10
issued from supervisor mode

 Behavior-sensitive unprivileged instructions reading the system state
 In particular instructions reading the system state that do not trap, violates the

equivalence criteria
● Ex: the OS reading PSW.M without a trap to the VMM

➔ OS concludes it is running in user mode…

 Instructions bypassing virtual memory
 If they don’t trap, the VM directly access physical memory, possibly outside of the

range allocated by the VMM

26

Outline

1) Introduction

2) Model

3) Theorem

4) Nested virtualization & hybrid VMs

5) Paging and the theorem

6) Theorem violations

27

Nested virtualization

 Nested virtualization or recursive virtual machines
 Running an hypervisor on top of an hypervisor, within a VM

Hardware

Operating System

Application

Virtual Machine Monitor

Operating System

Application

Operating System

Application

(nested) Virtual Machine Monitor

VM 1

VM 2
(nested) VM A (nested) VM B

Example: Xen-blanket Williams, Dan, Hani Jamjoom, and Hakim Weatherspoon. "The
Xen-Blanket: virtualize once, run everywhere." Proceedings of
the 7th ACM european conference on Computer Systems. ACM,
2012.

For testing & development,
cloud deployment homogenization,
security, ...

28

Hybrid Virtualization

 Architecture which fails to meet the P&G criteria because of
some specific reasons
 Example: JRST 1 in DEC PDP-10

● Return to user mode from user mode or from supervisor mode without trapping
➔ Control sensitive only when executed in supervisor mode

 User-sensitive instructions: control/behavior sensitive when executed in
user mode

 Supervisor-sensitive instructions: control/behavior sensitive when executed
in supervisor mode

● JRST 1 is supervisor-sensitive but not user-sensitive

29

Hybrid Virtualization (2)

 When the VM switches to vm-supervisor mode,
the VMM interpret all instructions until it
switches back to vm-user mode
 User-sensitive instructions will trap in vm-user and vm-

supervisor and be managed by the VMM

 Supervisor-sensitive instructions:
● Will not trap in vm-user, that’s okay they are not sensitive in user

mode

● Will be interpreted and emulated in vm-supervisor mode

 Rationale: time spent in vm-supervisor is low so
interpretation does not hurt performance

A hybrid VMM may be constructed for any conventional third-
generation computer if the set of user-sensitive instructions is a
subset of the set of privileged instructions

All
instructions innocuous

sensitive

User-
sensitive
(should trap)

supervisor-
sensitive
(no need to
 trap)

User & sup.
sensitive
(should trap)

30

Hybrid Virtualization (2)

 When the VM switches to vm-supervisor mode,
the VMM interprets all instructions until it
switches back to vm-user mode
 User-sensitive instructions will trap in vm-user and vm-

supervisor and be managed by the VMM

 Supervisor-sensitive instructions:
● Will not trap in vm-user, that’s okay they are not sensitive in user

mode

● Will be interpreted and emulated in vm-supervisor mode

 Rationale: time spent in vm-supervisor is low so
interpretation does not hurt performance

A hybrid VMM may be constructed for any conventional third-
generation computer if the set of user-sensitive instructions is a
subset of the set of privileged instructions

All
instructions innocuous

sensitive

User-
sensitive
(should trap)

supervisor-
sensitive
(no need to
 trap)

User & sup.
sensitive
(should trap)

Should be privileged if we want to build a hybrid VMM

31

Hybrid Virtualization (2)

A hybrid VMM may be constructed for any conventional third-
generation computer if the set of user-sensitive instructions is a
subset of the set of privileged instructions

All
instructions innocuous

sensitive

User-
sensitive
(should trap)

supervisor-
sensitive
(no need to
 trap)

User & sup.
sensitive
(should trap)

T

vm-user mode vm-supervisor mode

Every sensitive
instruction in this

mode traps

Hypervisor interprets
(i.e. no direct execution)

each instruction and
emulates the sensitive

ones

32

Outline

1) Introduction

2) Model

3) Theorem

4) Nested virtualization & hybrid VMs

5) Paging and the theorem

6) Theorem violations

33

Paging

http://shell-storm.org/blog/Paging-modes-
for-the-x86-32-bits-architectures/

http://
wiki.osdev.org
/Paging

34

Paging

http://shell-storm.org/blog/Paging-modes-
for-the-x86-32-bits-architectures/

Fine-grained (page) level memory
access permission management
through page table entries
access bits.

http://
wiki.osdev.org
/Paging

35

Paging

 With paging, monolithic OS maps kernel and process in the same address space for
performance reasons
 No page table switch and no TLB flush

 Supervisor/user bit in PTEs used to protect OS data/code from userland access

Kernel Space
(1 GB)

User Space
(3 GB)

@0

@C0000000

@FFFFFFFF
 Where to put the hypervisor in that linear

address space and how to protect it against
guest accesses?

 How to protect the guest OS, not running in
supervisor mode anymore, against guest process
accesses?

 How to create the guest-physical to host-physical
memory mapping according to the guest page
table definition?

36

Outline

1) Introduction

2) Model

3) Theorem

4) Nested virtualization & hybrid VMs

5) Paging and the theorem

6) Theorem violations

37

Theorem violations

 Direct access to physical memory
 Ex: MIPS

 Location-sensitive instructions
 Unprivileged read access to system state

 Ex: X86-32

 Behavior and control-sensitive violations
 Instructions with diferent semantics according to the privilege level

 Ex: X86-32

38

Theorem violations
MIPS

 MIPS: RISC ISA
 3 execution modes: kernel mode, supervisor mode, user mode

 Only kernel mode can execute privileged instructions

 Supervisor mode is user mode + access to additional ranges of virtual
memory unavailable from user mode

Kernel mode

Supervisor mode

User mode
Least

Privileged

Most
Privileged VMM

Guest OS

Guest application

39

Theorem violations
MIPS

 MIPS: RISC ISA
 3 execution modes: kernel mode, supervisor mode, user mode

 Only kernel mode can execute privileged instructions

 Supervisor mode is user mode + access to additional ranges of virtual
memory unavailable from user mode

● Intuitively, good model for virtualization: we can run everything in the same address space,
no need to switch segments and flush TLB on user/OS world switches

Kernel mode

Supervisor mode

User mode
Least

Privileged

Most
Privileged VMM

Guest OS

Guest application

Traps on privileged intructions

Cannot access guest
OS virtual memory

40

Theorem violations
MIPS (2)

 Problem: OS compiled for MIPS expect to be able to use KSEG0
and KSEG1
 Every memory reference in there would cause a trap if OS run in supervisor

mode (not in kernel mode)
● Violates the eficiency criteria

Source:
textbook

41

Theorem violations
x86-32

 Popular CISC ISA
 Multiple sensitive and unprivileged instructions

 More info:
● Robin, John Scott, and Cynthia E. Irvine. "Analysis of the Intel Pentium's ability to support a

secure virtual machine monitor." Proceedings of the 9th USENIX Security Symposium,
Denver, CO., 2000.

 Let’s illustrate one x86-32 violation with the “POPF” problem
 Source: https://www.cs.cmu.edu/~410-s14/lectures/L30_Virtualization.pdf

https://www.cs.cmu.edu/~410-s14/lectures/L30_Virtualization.pdf

42

Theorem violations
x86-32: the POPF issue

 POPF is behavior sensitive and does not trap

 One example of usage is for disabling interrupts

PUSHF # Push %EFLAGS on the stack
ANDL $0x003FFDFF, (%ESP) # Clear IF
POPF # Load %EFLAGS from stack

43

Theorem violations
x86-32: the POPF issue

 POPF is behavior sensitive and does not trap

 One example of usage is for disabling interrupts

PUSHF # Push %EFLAGS on the stack
ANDL $0x003FFDFF, (%ESP) # Clear IF
POPF # Load %EFLAGS from stack

 Works from kernel mode in a non-virtualized OS (it’s a privileged operation)

 When executed in user mode, CPU ignores the changes to the privileged EFLAGS bits

 With a P&G-defined VMM, guest OS running in user mode will silently fail to disable
interrupts

● No trap, no way for the VMM to emulate

44

Theorem violations
ARM

 RISC ISA
 Present multiple (24) sensitive but unprivileged instructions

 Present in Armv6, Armv7, similar issues with Armv8 (aarch64)

 Examples: LOAD/STOREs user register when in privileged
mode
 Fail silently (no trap) in user mode

 More info: see the textbook and this paper:
 Christofer Dall and Jason Nieh, KVM for ARM, Ottawa Linux Symposium, 2010

45

Further reading

 Popek, Gerald J., and Robert P. Goldberg. "Formal
requirements for virtualizable third generation architectures."
Communications of the ACM 17.7 (1974): 412-421.

 Irvin, C. E., and J. S. Robin. "Analysis of the Intel Pentium’s
ability to support a secure virtual machine monitor."
Proceedings of the USENIX Security Symposium. USENIX
Association. 2000.

 Christofer Dall and Jason Nieh, KVM for ARM, Ottawa Linux
Symposium, 2010

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45

