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Popek & Goldberg theorem: introduction

 Paper published in 1974 in Communications of the ACM

Popek, Gerald J., and Robert P. Goldberg. "Formal requirements for virtualizable 
third generation architectures." Communications of the ACM 17.7 (1974): 412-421.

 Defines the requirements for an ISA to be virtualizable
 ISA: Instruction set  architecture (ex: x86-64, x86-32, aarch64, etc.)

 Virtualizable: a VMM can be constructed on that architecture in a way that an OS 
running on the hardware can also run in a VM

 Original idea of the paper: show that some ISA are not 
virtualizable
 DEC PDP-10 taken as a case study
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Popek & Goldberg theorem: introduction

 Lack of popularity for virtualization at the time the paper was 
published

 Later, VMs become popular (end of 90s)
 Intel & AMD explicitly designed ADM-V and Intel VT-X in the 2000s to meet the 

Popek & Goldberg criteria
● Hardware support for x86-64 virtualization

 This is now a seminal paper on virtualization
 Can an ISA support a VMM that itself support arbitrary guests, relying 

exclusively on direct execution

 We’ll also learn through this theorem the fundamental principles 
behind hypervisor operation on virtualizable ISAs
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Popek & Goldberg theorem: introduction

 We will explain the theorem  as follows:
 Explain P&G simplified CPU model

● Simple hardware platform, but still representative of modern CPUs,  as a support for the theorem

 Explain how a regular, non-virtualized, OS would run on that simplified CPU 
model

 Give the theorem: what characteristics an ISA needs to exhibit in order to be able 
to run a VMM and VMs

 Describe a VMM  for that simplified CPU model
● Which properties it should satisfy to be an actual eficient VMM

● How it operates 

 Give some examples of theorem violations (ISAs not virtualizable)
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The model
Simplified CPU definition

 Authors defines a simplified computer model to be the support 
for the theorem

1) One processor with 2 execution modes: user and supervisor

2) Support for virtual memory implemented through segmentation
● Single segment: Base B, Limit L

● Virtual range [0, L[ mapped to physical range [B, B + L[

● (no paging)

3) Physical memory is contiguous, starts at 0, size: SZ

Virtual address space

                                                                                      Physical Memory

B B + L0
SZ

L0
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The model
Simplified CPU definition (2)

 Authors defines a simplified computer model to be the support for the 
theorem (continued)

4) CPU state: Processor Status Word (PSW): (M, B, L, PC)
● Execution level M = {s, u} (supervisor or user)
● Segment register (B, L)
● The current program counter: PC

● Instruction currently executed

5) CPU ofers support for saving PSW content in 
memory MEM[0] and loading a new value 
from MEM[1]

● Action of entering the OS following a trap

6) CPU ofers an instruction to load PSW 
content from a location in memory

● Exiting the OS afer a trap processing

7) No I/O or interrupts for simplicity

user
supervisor

(OS)

trap

MEM[0]=PSW
PSW=MEM[1]

PSW=MEM[0]

Ti
m

e

Example of trap: system call == 
world switch

Kernel virtual address space

MEM[0] → Saved process state
MEM[1] → kernel state (trap entry point)

Exception/
Syscall
processing



10

The model
OS operation without VMM

 This simple model is necessary, and suficient, to run an OS
1) Kernel runs in M = s, applications run in M = u

2) Kernel sets trap entry point during initialization
● MEM[1] ← (M:s, B:0, L:SZ, PC:trap_entry_point)

3) Kernel allocates a contiguous range of physical memory for each 
application defined by (B, L)

4) Kernel launches/resume apps with address space [B, B+L[, currently 
executing PC:

● PSW ← (M:u, B:B, L:L, PC:PC)

5) At the trap entry point, kernel decodes the instruction MEM[0].PC, 
determines the cause of the trap and takes appropriate actions
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The model
VMM construction & requirements

Given a computer defined according to the model, under which 
conditions can a VMM be constructed so that the VMM:
● can execute one or more VMs;
● is in complete control of the machine at all times;
● supports arbitrary, unmodified, and potentially malicious OS 

designed for the same architecture; and
● be efficient and show at worst a small performance decrease?

 Research question posed by Popek & Goldberg:
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The model
VMM construction & requirements (2)

 The VMM needs to comply with these criteria:
1) Equivalence

● VM is a duplicate of the underlying physical machine
● Program (application and OSes) behave similarly running natively and in the VM

● They run unmodified

2) Safety
● VMM in complete control of the hardware at all time
● No assumption on guests, they can be malicious
● VMM must enforce isolation

● Between VM and the VMM/hardware
● Between VM themselves

➢ No shared state

3) Performance
● Minimal decrease in a virtualized program execution speed
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The Popek & Goldberg Theorem

 A few definitions:
 Sensitive instructions

● Control sensitive: instruction updates the system state

● Behavior sensitive: instruction semantics depends on the value of the system state

 Instruction that are not sensitive are named innocuous instructions

 Privileged instructions
● Can only be executed in supervisor mode and traps when executed in user mode

Theorem:
For any conventional third-generation computer, a VMM may be 
constructed if the set of sensitive instructions for that computer is 
a subset of the set of privileged instructions

{control-sensitive}  {∪ behavior-sensitive}  {⊆ privileged}
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The Popek & Goldberg Theorem (2)

 X86 instruction examples
 Privileged instruction: HLT

● Traps if %cpl != 0

 Control sensitive: LGDT
● Controls x86 segments

 Behavior sensitive: POPF
● Load status (state) register with data from the stack

https://www.intel.com/content/dam/www/public
/us/en/documents/manuals/64-ia-32-architectur
es-sofware-developer-instruction-set-reference-
manual-325383.pdf
 

Privileged

Innocuous

Sensitive

Virtualizable
ISA

Privileged

Innocuous

Privileged

Innocuous

Sensitive

Non-virtualizable
ISA

Theorem in other words: all sensitive 
instructions need to trap in user mode 
for the ISA to be virtualizable

https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/manuals/64-ia-32-architectures-software-developer-instruction-set-reference-manual-325383.pdf
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The Popek & Goldberg Theorem
VMM operation

 {control-sensitive}  {∪ behavior-sensitive}  {⊆ privileged}

 Converse holds too: if the criteria is not met, a VMM cannot be 
constructed for that architecture

➔If a control-sensitive instruction does not trap, any guest can 
modify  the system state without supervision/check from the VMM
- For example a guest OS installing an arbitrary page table

● With trap and emulate (direct execution) the guest OS runs in user 
mode
➔If a behavior sensitive instruction does not trap:

- Guest OS instruction executed with user-level semantics (loss of 
equivalence)
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The Popek & Goldberg Theorem
VMM operation

 Under these conditions, VMM operates as follows:

1) Only the VMM runs in supervisor mode

● Guest OS runs in user mode!
● VMM allocates contiguous physical memory for himself, 

never mapped by guests

Hardware

Non-virtualized environment Virtualized environment

Operating System

Application

Hardware

Operating System

Application

Virtual Machine Monitorsupervisor

user
CPU privilege

level view:
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The Popek & Goldberg Theorem
VMM operation (2)

 Under these conditions, VMM operates as follows (continued):

2) VMM allocates contiguous physical memory for VMs

● Each machine gets a range defined by addr0 and memsize

Memory view: VM2VM1VMM

(adapted from 
textbook)

Host-physical memory

addr0VM1 memsizeVM1

addr0VM2 memsizeVM2
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The Popek & Goldberg Theorem
VMM operation (3)

 Under these conditions, VMM operates as follows (continued):

3) VMM keeps in memory the CPU state for each VM, vPSW

● Consists of (M, B, L, PC)
➔M: execution mode the VM thinks it’s running on: vm-supervisor vs vm-guest

Memory view: VM2VM1VMM

(adapted from textbook)

Host-physical memory

addr0 memsize

vPSW.B vPSW.L

Guest-physical memory

Virtual memory of a VM’ process/OS

vPSW.PC
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The Popek & Goldberg Theorem
VMM operation (4)
 Under these conditions, VMM operates as follows (continued):

 VMM resumes VM execution by loading the hardware PSW ← (M’, B’, L’, PC’)

● M’ ← u
● B’ ← addr0 + vPSW.B
● L’ ← min(vPSW.L, memsize – vPSW.B)

➔The min ensures that a potentially malicious VM cannot access memory above the limit defined by the 
VMM

● PC’ ← vPSW.PC

Memory view: VM2VM1VMM Host-physical memory

addr0 memsize

vPSW.B vPSW.L

Guest-physical memory

Virtual memory of a VM’ process/OS

PC’ = vPSW.PC

B’ ← addr0 + vPSW.B

L’ ← min(vPSW.L, memsize – vPSW.B)
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The Popek & Goldberg Theorem
VMM operation (5)

 Under these conditions, VMM operates as follows (continued):

5) VMM update vPSW.PC ← PSW.PC on every trap

● Note that any try by the VM to modify M, B or L will trap
➔Theorem hypothesis assumes all control-sensitive instruction are also privileged

6) Next, VMM emulates the semantics of the instruction that trapped

● If guest OS caused the trap (vPSW = s), VMM emulates according to the ISA
➔Ex: if the guest OS is trying to update the segment register, the VMM update vPSW.B and 

vPSW.L
- Hardware PSW.L and PSW.B will be set accordingly when we return back to VM execution: 
PSW.B ← addr0 + vPSW.B and PSW.L ← min(vPSW.L, memsize – vPSW.B)

➔Then the VMM ensures the VM will resume at the next instruction: vPSW.PC++
➔Then the VM resumes execution by loading PSW

user supervisor user
Guest execution

mode

Time

VMM instruction emulation
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The Popek & Goldberg Theorem
VMM operation (6)

 Under these conditions, VMM operates as follows (continued):

6) If guest application caused the trap (vPSW = u), VMM emulates according to the ISA

➔Application is doing a syscall or something illegal: should be handled by the 
guest OS

➔MEM[addr0] ← vPSW
➢Save guest application state in the host-physical location of guest-physical 
MEM[0]

➔vPSW ← MEM[addr0 + 1] load guest OS state (OS entry point) from memory
➔Resumes VM (in guest OS mode based on the updated vPSW)

user supervisor user
Guest execution

mode

Time

VMM instruction emulation
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The Popek & Goldberg Theorem
VMM operation (7)

 Under these conditions, VMM operates as follows (continued):

7) According to the theorem hypothesis, all instruction updating the system state (control-
sensitive) are privileged, so they will trap

● Includes instructions updating the virtual to physical mapping
➔Each of these needs to be checked by the VMM to ensure safety (isolation)
➔Each of these needs to be emulated to give each VM the illusion of exclusive and full 

access to physical memory

VM2VM1VMM
Host-physical

memory

addr0 memsize

B L

Guest-physical 
memory

Virtual memory of a 
VM’ process/OS

1) Guest OS says: 
PSW.B ← B; PSW.L ← L
2) Traps to the VMM which update vPSW
then update the hardware:
PSW.B ← addr0 + B; 
PSW.L = min(L, addr0+memsize)

The MMU is transparently configured diferently than 
what the guest OS asks → these instructions need to 
trap
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The Popek & Goldberg Theorem
VMM operation (8)

 Under these conditions, VMM operates as follows (continued):

7) According to the theorem hypothesis, all instruction updating the system state (control-
sensitive) are privileged, so they will trap (continued)

● Includes user / supervisor transition instructions
➔Each of these needs to be tracked by the VMM 

- to keep M = u at all times in the VM in to ensure safety: VMM in complete control at all times
- to correctly emulate privileged instruction (behavior-sensitive) according to the current 
guest privileged level (guest-user or guest-supervisor) to ensure equivalence

8) Still according to the hypothesis, behavior-sensitive instruction will also trap

● Ex: reading PSW.M or PSW.B
➔Remember than the actual values are set by the VMM to something diferent than what the 

guest OS think they are
➔Need to be emulated by the VMM otherwise this will lead to programs behaving diferently 

on bare-metal vs virtualized: equivalence requirements
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The Popek & Goldberg Theorem
Counter examples

 Control-sensitive unprivileged instructions
 Update to the system state that does not trap!

● Ex: unprivileged switch from supervisor to user mode with JRST1 “return to user” in DEC PDP-10 
issued from supervisor mode

 Behavior-sensitive unprivileged instructions reading the system state
 In particular instructions reading the system state that do not trap, violates the 

equivalence criteria
● Ex: the OS reading PSW.M without a trap to the VMM

➔ OS concludes it is running in user mode…

 Instructions bypassing virtual memory
 If they don’t trap, the VM directly access physical memory, possibly outside of the 

range allocated by the VMM
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Nested virtualization

 Nested virtualization or recursive virtual machines
 Running an hypervisor on top of an hypervisor, within a VM

Hardware

Operating System

Application

Virtual Machine Monitor

Operating System

Application

Operating System

Application

(nested) Virtual Machine Monitor

VM 1

VM 2
(nested) VM A (nested) VM B

Example: Xen-blanket Williams, Dan, Hani Jamjoom, and Hakim Weatherspoon. "The 
Xen-Blanket: virtualize once, run everywhere." Proceedings of 
the 7th ACM european conference on Computer Systems. ACM, 
2012.

For testing & development, 
cloud deployment homogenization,
security, ...
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Hybrid Virtualization

 Architecture which fails to meet the P&G criteria because of 
some specific reasons
 Example: JRST 1 in DEC PDP-10

● Return to user mode from user mode or from supervisor mode without trapping
➔ Control sensitive only when executed in supervisor mode

 User-sensitive instructions: control/behavior sensitive when executed in 
user mode

 Supervisor-sensitive instructions: control/behavior sensitive when executed 
in supervisor mode

● JRST 1 is supervisor-sensitive but not user-sensitive
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Hybrid Virtualization (2)

 When the VM switches to vm-supervisor  mode,
the VMM interpret all instructions until it 
switches back to vm-user mode
 User-sensitive instructions will trap in vm-user and vm-

supervisor and be managed by the VMM

 Supervisor-sensitive instructions:
● Will not trap in vm-user, that’s okay they are not sensitive in user 

mode

● Will be interpreted and emulated in vm-supervisor mode

 Rationale: time spent in vm-supervisor is low so 
interpretation does not hurt performance

A hybrid VMM may be constructed for any conventional third-
generation computer if the set of user-sensitive instructions is a 
subset of the set of privileged instructions

All 
instructions innocuous

sensitive

User-
sensitive
(should trap)

supervisor-
sensitive
(no need to
 trap)

User & sup.
sensitive
(should trap)
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Hybrid Virtualization (2)

 When the VM switches to vm-supervisor  mode,
the VMM interprets all instructions until it 
switches back to vm-user mode
 User-sensitive instructions will trap in vm-user and vm-

supervisor and be managed by the VMM

 Supervisor-sensitive instructions:
● Will not trap in vm-user, that’s okay they are not sensitive in user 

mode

● Will be interpreted and emulated in vm-supervisor mode

 Rationale: time spent in vm-supervisor is low so 
interpretation does not hurt performance

A hybrid VMM may be constructed for any conventional third-
generation computer if the set of user-sensitive instructions is a 
subset of the set of privileged instructions

All 
instructions innocuous

sensitive

User-
sensitive
(should trap)

supervisor-
sensitive
(no need to
 trap)

User & sup.
sensitive
(should trap)

Should be privileged if we want to build a hybrid VMM
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Hybrid Virtualization (2)

A hybrid VMM may be constructed for any conventional third-
generation computer if the set of user-sensitive instructions is a 
subset of the set of privileged instructions

All 
instructions innocuous

sensitive

User-
sensitive
(should trap)

supervisor-
sensitive
(no need to
 trap)

User & sup.
sensitive
(should trap)

T

vm-user mode vm-supervisor mode

Every sensitive 
instruction in this 

mode traps

Hypervisor interprets
(i.e. no direct execution)

each instruction and 
emulates the sensitive 

ones
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Paging

http://shell-storm.org/blog/Paging-modes-
for-the-x86-32-bits-architectures/

http://
wiki.osdev.org
/Paging
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Paging

http://shell-storm.org/blog/Paging-modes-
for-the-x86-32-bits-architectures/

Fine-grained (page) level memory
access permission management
through page table entries
access bits.

http://
wiki.osdev.org
/Paging
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Paging

 With paging, monolithic OS maps kernel and process in the same address space for 
performance reasons
 No page table switch and no TLB flush

 Supervisor/user bit in PTEs used to protect OS data/code from userland access

Kernel Space
(1 GB)

User Space
(3 GB)

@0

@C0000000

@FFFFFFFF
 Where to put the hypervisor in that linear 

address space and how to protect it against 
guest accesses?

 How to protect the guest OS, not running in 
supervisor mode anymore, against guest process 
accesses?

 How to create the guest-physical to host-physical 
memory mapping according to the guest page 
table definition?
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Theorem violations

 Direct access to physical memory
 Ex: MIPS

 Location-sensitive instructions
 Unprivileged read access to system state

 Ex: X86-32

 Behavior and control-sensitive violations
 Instructions with diferent semantics according to the privilege level

 Ex: X86-32



38

Theorem violations
MIPS

 MIPS: RISC ISA
 3 execution modes: kernel mode, supervisor mode, user mode

 Only kernel mode can execute privileged instructions

 Supervisor mode is user mode + access to additional ranges of virtual 
memory unavailable from user mode

Kernel mode

Supervisor mode

User mode
Least

Privileged

Most
Privileged VMM

Guest OS

Guest application
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Theorem violations
MIPS

 MIPS: RISC ISA
 3 execution modes: kernel mode, supervisor mode, user mode

 Only kernel mode can execute privileged instructions

 Supervisor mode is user mode + access to additional ranges of virtual 
memory unavailable from user mode

● Intuitively, good model for virtualization: we can run everything in the same address space, 
no need to switch segments and flush TLB on user/OS world switches

Kernel mode

Supervisor mode

User mode
Least

Privileged

Most
Privileged VMM

Guest OS

Guest application

Traps on privileged intructions

Cannot access guest 
OS virtual memory
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Theorem violations
MIPS (2)

 Problem: OS compiled for MIPS expect to be able to use KSEG0 
and KSEG1
 Every memory reference in there would cause a trap if OS run in supervisor 

mode (not in kernel mode)
● Violates the eficiency criteria

Source:
textbook
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Theorem violations
x86-32

 Popular CISC ISA
 Multiple sensitive and unprivileged instructions

 More info:
● Robin, John Scott, and Cynthia E. Irvine. "Analysis of the Intel Pentium's ability to support a 

secure virtual machine monitor." Proceedings of the 9th USENIX Security Symposium, 
Denver, CO., 2000.

 Let’s illustrate one x86-32 violation with the “POPF” problem
 Source: https://www.cs.cmu.edu/~410-s14/lectures/L30_Virtualization.pdf

https://www.cs.cmu.edu/~410-s14/lectures/L30_Virtualization.pdf
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Theorem violations
x86-32: the POPF issue

 POPF is behavior sensitive and does not trap

 One example of usage is for disabling interrupts

PUSHF       # Push %EFLAGS on the stack
ANDL $0x003FFDFF, (%ESP) # Clear IF
POPF # Load %EFLAGS from stack
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Theorem violations
x86-32: the POPF issue

 POPF is behavior sensitive and does not trap

 One example of usage is for disabling interrupts

PUSHF       # Push %EFLAGS on the stack
ANDL $0x003FFDFF, (%ESP) # Clear IF
POPF # Load %EFLAGS from stack

 Works from kernel mode in a non-virtualized OS (it’s a privileged operation)

 When executed in user mode, CPU ignores the changes to the privileged EFLAGS bits

 With a P&G-defined VMM, guest OS running in user mode will silently fail to disable 
interrupts

● No trap, no way for the VMM to emulate
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Theorem violations
ARM 

 RISC ISA
 Present multiple (24) sensitive but unprivileged instructions

 Present in Armv6, Armv7, similar issues with Armv8 (aarch64)

 Examples: LOAD/STOREs user register when in privileged 
mode
 Fail silently (no trap) in user mode

 More info: see the textbook and this paper:
 Christofer Dall and Jason Nieh, KVM for ARM, Ottawa Linux Symposium, 2010
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Further reading

 Popek, Gerald J., and Robert P. Goldberg. "Formal 
requirements for virtualizable third generation architectures." 
Communications of the ACM 17.7 (1974): 412-421.

 Irvin, C. E., and J. S. Robin. "Analysis of the Intel Pentium’s 
ability to support a secure virtual machine monitor." 
Proceedings of the USENIX Security Symposium. USENIX 
Association. 2000.

 Christofer Dall and Jason Nieh, KVM for ARM, Ottawa Linux 
Symposium, 2010
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