
Virtualization without Hardware Support

Pierre Olivier

ECE 5984 Virtualization Technologies

2

Introduction

 Some ISA fail to meet the constraints of the Popek & Goldberg theorem
 No VMM relying purely on direct execution + trap-and-emulate can be built on these ISA

 Some systems circumvent these ISA limitation to build a VMM
 Trade-of some of Popek & Goldberg criteria (performance/equivalence/safety)

 Disco (MIPS, 1997)

 Vmware Workstation (x86-32, 1999)

 Xen (x86-32, 2003)

 KVM for ARM (ARMv5/v6, 2010)
 Don’t mix it up with ARM/KVM which is for ARM ISA versions with hardware support for

virtualization!

3

Outline

1) Disco (MIPS, 1997)

2) Vmware Workstation (x86-32, 1999)

3) Xen (x86-32, 2003)

4) KVM/ARM (ARMv6/v7/v8, 2010)

4

Outline

1) Disco (MIPS, 1997)

2) Vmware Workstation (x86-32, 1999)

3) Xen (x86-32, 2003)

4) KVM/ARM (ARMv5/v6, 2010)

5

Disco

Bugnion, Edouard, et al. "Disco: Running commodity operating systems on scalable multiprocessors." ACM Transactions on Computer Systems (TOCS) 15.4 (1997): 412-447.
Govil, Kinshuk, et al. "Cellular Disco: Resource management using virtual clusters on shared-memory multiprocessors." ACM SIGOPS Operating Systems Review. Vol. 33. No. 5. ACM, 1999.

Scalable Multi-processor

General purpose OS

Scalable Multi-processor

Custom (scalable) OS
Virtualization layer

(Disco)

General
purpose

OS

Scalable Multi-processor

General
purpose

OS

Scalability issues Complexity, engineering
efort

Disco

 Goal: run commodity OS on
scalable multi-processors
 Stanford FLASH processor (MIPS)

Kuskin, Jefrey, et al. "The stanford flash
multiprocessor." ACM SIGARCH Computer
Architecture News. Vol. 22. No. 2. IEEE
Computer Society Press, 1994.

6

Disco
Adherence to Popek & Goldberg criterias

 Equivalence:
 Need to rewrite OS sources (IRIX) to relocate the kernel from KSEG0 to KSEG

● It means recompilation

Source:
textbook

 MIPS has 3 levels of execution: kernel (most privileged), supervisor , and user
 Disco hypervisor in kernel mode

 Guest OS in supervisor mode (shifed from kernel mode)

 Guest applications in user mode

 That way, hypervisor is protected from the guest, and guest OS is protected from applications

7

Disco
Adherence to Popek & Goldberg criterias (2)

 Safety
 Relies on virtual memory protection and MIPS execution modes (Kernel,

Supervisor, User)
● Protect VMM from VM

● Protect guest OS from applications

 Performance
 Most code should run directly and VMM handles trap eficiently → does not

hold on MIPS
● Special memory page to replace read-only privileged registers

● Hypercalls

● Larger TLB

8

Disco
MIPS privileged registers, Hypercalls

 MIPS has privileged registers only accessible from kernel mode,
that the guest OS expects to be able to manipulate
 1 trap / register access is unacceptable

 Frequently accessed privileged registers are set in dedicated special memory
pages

● Guest OS is rewritten to access this page rather than the original register

 Disco implements hypercalls
 Synchronous call from the rewritten guest OS to the VMM

● Similar to an application making a system call to an OS

 Ex: hypercall when the guests OS put a page in its free-list
● Instructs the VMM that the guest is not using the page (for now) so it can be allocated to

another VM

9

Disco
Memory virtualization: L2TLB

 MIPS has a softare TLB
 Managed by the OS: on TLB miss a handler is called an the OS is responsible

for inserting the mapping into the TLB
● OS defines its own page table format, walked in the handler to resolve and insert the

mapping

 When running with virtualization, a TLB miss traps to the hypervisor
● The hypervisor cannot install the new mapping itself because it is unaware of the guest

page table format

● Hypervisor needs to call the guest OS TLB miss handler, which (tries to) install the mapping
➔ Traps to the hypervisor for verification and remapping

10

Disco
L2TLB (2)

Guest OS Disco

Hardware TLB

supervisor kernel

Sofware

Hardware

Install
new

mapping

(0 → 12)

RAM

0 12 100 112

RAM for guest

(0 → 112)

Custom
page

tables

Check & modify

(< 64 entries)

11

Disco
L2TLB (2)

Guest OS Disco

Hardware TLB

supervisor kernel

Sofware

Hardware

Install
new

mapping

(0 → 12)

RAM

0 12 100 112

RAM for guest

Custom
page

tables

Check & modify

- Costly: multiple privileged operations
Involved
- Lots of occurrences: small TLB
(64 entries) and kernel in KSEG

(0 → 112)

(< 64 entries)

12

Disco
L2TLB (2)

Guest OS Disco

Hardware TLB

supervisor kernel

Sofware

Hardware

Install
new

mapping

(0 → 12)

RAM

0 12 100 112

RAM for guest

Custom
page

tables

- Costly: multiple privileged operations
Involved
- Lots of occurrences: small TLB
(64 entries) and kernel in KSEG

(0 → 112)

(< 64 entries)

L2 TLB: cache
(1024 entries)

0 → 112
123 → 130
...

13

Disco
L2TLB (2)

Guest OS Disco

Hardware TLB

supervisor kernel

Sofware

Hardware

Install
new

mapping

(0 → 12)

RAM

0 12 100 112

RAM for guest

Custom
page

tables

- Costly: multiple privileged operations
Involved
- Lots of occurrences: small TLB
(64 entries) and kernel in KSEG

(0 → 112)

(< 64 entries)

L2 TLB: cache
(1024 entries)

0 → 112
123 → 435
...

Slightly
modified to
see a 1024
entries TLB

14

Disco
Physical memory virtualization

VM1 VM2

Guest physical memory Guest physical memory

Host physical memory
1 NUMA node

Many-to-one
(with COW)

One-to-many
(replication)

NUMA
migration

Vi
rt

ua
liz

at
io

n
la

ye
r

All done in a completely transparent way from the guest OS point of view
- Enhanced scalability for commodity OS

15

Outline

1) Disco (MIPS, 1997)

2) Vmware Workstation (x86-32, 1999)

3) Xen (x86-32, 2003)

4) KVM for ARM (ARMv5/v6, 2010)

16

Vmware Workstation

 Goal: running totally unmodified OS on x86-32
 Using a type-II (hosted) hypervisor with Linux or Windows host OS

 Equivalence
 X86-32 fails P&G theorem

 Hybrid virtualization: Vmware workstation combines direct execution with dynamic binary
translation (fast emulation/interpretation)

 Safety
 Use segment truncation for isolation

 Focus on a subset of x86-32 instruction to run specific guest OS

 Performance
 Goal: run near native speed, worst case same performance as previous generation CPUs

 VMWare ofers full equivalence at the cost of performance (DBT, MMU
virtualization)

17

Vmware Workstation
X86-32

 Native execution mode: protected mode
 Also legacy execution modes real, system management, v8086

 In protected mode, current privilege level (cpl)
 Kernel: %cpl = 0

 User: %cpl = 3

 Iopl bits in FLAGS register optionally enable user code to disable interrupts

 Implements both segmentation and paging
 Code (%cs), stack (%ss), data (%ds) and extra (%es, %fs, %gs) segment registers

 3 level page tables rooted at %cr3 with hardware TLB

 Logical address → [segmentation] → linear address → [paging] → physical address

18

Vmware Workstation
X86-32

 With Vmware:
 Hypervisor runs in ring 0

 Guest OS runs in ring 1, de-privileged
from ring0

 Application runs in ring 3
● Guest OS is protected from applications through

the page table access bits

Source: wikipedia

Hypervisor

Guest OS

Guest application

19

Vmware Workstation
When to use direct execution, when to interpret

Input: Current state of the virtual CPU
Output: True if the direct execution subsystem may be used;

False if binary translation must be used instead

if !cr0.pe then
return false;

end if
if eflags.v8086 then

return true;
end if
if (eflags.iopl >= cpl) || (!eflags.if) then

return false;
end if
/* a few corner cases here */
return true;

20

Vmware Workstation
When to use direct execution, when to interpret

Input: Current state of the virtual CPU
Output: True if the direct execution subsystem may be used;

False if binary translation must be used instead

if !cr0.pe then
return false;

end if
if eflags.v8086 then

return true;
end if
if (eflags.iopl >= cpl) || (!eflags.if) then

return false;
end if
/* a few corner cases here */
return true;

Real mode always
uses DBT

21

Vmware Workstation
When to use direct execution, when to interpret

Input: Current state of the virtual CPU
Output: True if the direct execution subsystem may be used;

False if binary translation must be used instead

if !cr0.pe then
return false;

end if
if eflags.v8086 then

return true;
end if
if (eflags.iopl >= cpl) || (!eflags.if) then

return false;
end if
/* a few corner cases here */
return true;

V8086 mode always
uses direct execution

22

Vmware Workstation
When to use direct execution, when to interpret

Input: Current state of the virtual CPU
Output: True if the direct execution subsystem may be used;

False if binary translation must be used instead

if !cr0.pe then
return false;

end if
if eflags.v8086 then

return true;
end if
if (eflags.iopl >= cpl) || (!eflags.if) then

return false;
end if
/* a few corner cases here */
return true;

If we can disable
interrupts, use DBT
- i.e. running kernel code
- but also user code with
iopl bits

23

Vmware Workstation
Dynamic Binary Translation

Input: Current state of the virtual CPU
Output: True if the direct execution subsystem may be used;

False if binary translation must be used instead

if !cr0.pe then
return false;

end if
if eflags.v8086 then

return true;
end if
if (eflags.iopl >= cpl) || (!eflags.if) then

return false;
end if
/* a few corner cases here */
return true;

Long story short: use Dynamic Binary
Translation when running in guest-supervisor
mode and Direct Execution when running in
guest-user mode

 Dynamic Binary Translation
 Translates dynamically (at runtime), ahead of time, guest instructions, replacing

privileged operations with trap instructions

 Unit of translation: basic bloc rather than a single instruction

 Translation cache and heavy optimizations

24

Vmware Workstation
Segment truncation

Source: textbook

25

Vmware Workstation
Segment truncation

Source: textbook
PT permission bit used to protect guest OS from guest applications

26

Vmware Workstation
Segment truncation

Source: textbook

Segmentation used to protect VMM from guest

27

Vmware Workstation
Segment truncation

Source: textbook

Cannot access
VMM area
→ segments
truncated

28

Vmware Workstation
Segment truncation

Source: textbook

- Executes from TC
with %cpl == 1
- %gs points to VMM
area
- Translator makes
sure generated code
does not tamper
with VMM state
- Guest usage of %gs
translated to use %fs

29

Vmware Workstation
Hypervisor and host OS coexistence

 Vmware VMM has full control of the CPU when executing a VM

Host OS

Virtual
Machine

Virtual
Machine

Virtual
Machine

VMM

Hardware

User-level

System-level

Host OS context VMM context

ProgramProgram(Host)
program

30

Vmware Workstation
Hypervisor and host OS coexistence

 Vmware VMM has full control of the CPU when executing a VM

VMX

Host OS

Virtual
Machine

Virtual
Machine

Virtual
Machine

VMM

Hardware

User-level

System-level

Host OS context VMM context

 Host user-space program
VMX for management
and I/O emulation

 Host kernel code (VMM
driver)

 VMM
 Same privilege level as host

OS but completely
separated when running

● Host OS paused and removed
from virtual memory: world
switch

ProgramProgram(Host)
program

VMM
driver

Adapted from textbook

31

Vmware Workstation
Hypervisor and host OS coexistence

 Vmware VMM has full control of the CPU when executing a VM

VMX

Host OS

Virtual
Machine

Virtual
Machine

Virtual
Machine

VMM

Hardware

User-level

System-level

Host OS context VMM context

 Host user-space program
VMX for management
and I/O emulation

 Host kernel code (VMM
driver)

 VMM
 Same privilege level as host

OS but completely
separated when running

● Host OS paused and removed
from virtual memory: world
switch

ProgramProgram(Host)
program

VMM
driver

Adapted from textbook

HW interrupt

Trap

32

Vmware Workstation
MMU virtualization: x86 paging

33

Vmware Workstation
MMU virtualization: x86 paging

Translation made
automatically by the
hardware,
MMU walks the page table

34

Vmware Workstation
MMU virtualization: x86 paging

OS Installs a new page
table:
Write in cr3 the address
of the root page

35

Vmware Workstation
MMU virtualization: x86 paging

OS Installs a new page
table:
Write in cr3 the address
of the root page

OS updates a page table:
Write in memory in pages
corresponding to page
table

36

Vmware Workstation
MMU virtualization: shadow page tables

Virtual address
space

Guest physical
memory

Host physical
memory

?

VM1 VM2
42 100

9090

VM1 PT VM2 PT

37

Vmware Workstation
MMU virtualization: shadow page tables

 Each VM installs a page table by mov to %cr3
 Privileged operation, traps to the hypervisor

● The hypervisor cannot install the guest page table as-is because two VMs may want to map the same physical page

 The hypervisor actually installs a diferent page table on the hardware,
corresponding to guest-virtual → host physical mapping
 Called the shadow page table

 Guest page table (not used by the hardware), is mapped read-only
 Each update (i.e. modification of the page table) will trap the the hypervisor (shadow/hidden

page fault) to keep the shadow page table in sync

 Relatively high performance cost:
 Shadow page faults: trap and overhead for page table updates

 Regular page faults: also traps to VMM, overhead

38

Vmware Workstation
MMU virtualization: shadow page tables

Virtual address
space

Guest physical
memory

Host physical
memory

VM1 VM2
42 100

9090

VM1 PT VM2 PT

VM2 SPTVM1 SPT
50 150

Shadow page tables mapping,
Actually used by the hardware

Guest page tables, not used by the hardware,
monitored by the VMM to keep SPT up to date

39

Outline

1) Disco (MIPS, 1997)

2) Vmware Workstation (x86-32, 1999)

3) Xen (x86-32, 2003)

4) KVM for ARM (ARMv5/v6, 2010)

40

Xen

 Xen target x86-32

 Approach: paravirtualization
 The guest OS sources can be (slightly) modified

● Replace sensitive, unprivileged instructions with direct calls to the hypervisor: hypercalls

● Need to recompile: loss of equivalence

● Mainly targets Linux, NetBSD and Solaris also available, as well as an experimental port of
Windows XP

 However applications can run unmodified

 Paravirtualization: get performance at the cost of equivalence

[1] Barham, Paul, et al. "Xen and the art of virtualization." ACM SIGOPS operating systems review. Vol. 37. No. 5. ACM, 2003.

41

Xen
Xen paravirtualized interface

Source: Barham, Paul, et al. "Xen and the art of virtualization." ACM SIGOPS operating systems review. Vol. 37. No. 5.
ACM, 2003.

Source: wikipedia

Xen

Guest OS

Application

42

Xen
Xen architecture

Hardware

Xen: Type I (bare metal) hypervisor

Dom0:
privileged

VM

DomU:
Regular

VM

DomU:
Regular

VM

DomU:
Regular

VM

Dom0:
- first VM to execute when Xen starts
- handles administrative tasks
- handles device emulation

I/O

43

Xen
MMU virtualization: direct paging

 Contrary to shadow paging, guest page tables are used directly
 However they are not setup and updated directly by the guest

 Guest page tables are mapped read-only for the guest
 Guest installs/update page tables through hypercalls

● mmu_update

● Can be batched to avoid multiple traps such as with shadow paging

 Guest directly requests guest-virtual to host-physical mapping

 In the hypervisor, the hypercall implementation check the validity of the
requested mapping
 Invariant enforced: only pages with writable type have a writable mapping in the PT

none
LN Page

Table pages
Segment

descriptor pages
Writable

Guest allocated physical RAM

44

Xen
CPU virtualization: interrupts & system calls

 At boot time a guest registers its Interrupt Descriptor Table with
Xen through the set_trap_table hypercall
 IDT contains handler addresses

for each interrupt number

 Xen installs its own IDT on the hardware
 Most interrupts are simply forwarded to the

guest through its registered IDT

 (validated) guest syscall handler for fast syscall
processing (no switch to ring 0)

 Guest page fault handler is modified to avoid
accessing cr2

Interrupt/
exception #

Description

0 Divide error

1 Debug
exception

2 NMI

3 Breakpoint

...

14 Page fault

...

128 System call
(convention)

...

Xen
handlers

Guest
handler

45

Xen
CPU virtualization: time management

 Two types of time a Xen guest needs to be aware of:
 Wall-clock time: how much absolute time has passed since a given referential point in the past

● Useful to keep track of the time of day, schedule operations in the future (ex: cron)

 Virtual time: how much time a guest has spent actually running
● Useful to ensure fair scheduling within the guest

➔ The guest itself is not scheduled 100% of the time

● 1PCPU, 2 domains with 1VCPU and 2 tasks each, each task supposed to be scheduled for an equal amount of time
➔ Each domain (i.e. VCPU) also scheduled for an equal amount of time
➔ This situation may occur: 1 task in each domain gets close 50% of the PCPU, other task gets close to nothing

 Wall clock-time computed from:
 Initial system type, current system time, timestamp counter

VM1

VM2

Time

46

Xen
I/O virtualization: paravirtualized drivers

Xen

Dom0 DomU

Real
driver

Hardware

Front-end
driver

Back-end
driver

Shared memory
Ring buffers

47

Outline

1) Disco (MIPS, 1997)

2) Vmware Workstation (x86-32, 1999)

3) Xen (x86-32, 2003)

4) KVM for ARM (ARMv5/v6, 2010)

48

KVM/ARM
Lightweight paravirtualization

 ARM is not directly virtualizable
 Lightweight paravirtualization: script-based technique to automatically

paravirtualize a guest OS
● Replace sensitive instructions with hypervisor calls

● Completely automated, no guest-OS specific expertise required

 Diferent from Xen virtualization requiring manual source
modification and guest-OS specific expertise

 Script tested successfully on multiple kernel versioms
 Only concerned by ASM files (C compilers do not generate privileged instructions)

 Work with regular expressions, replacing privileged instructions with trap
instructions (exceptions)

49

KVM/ARM
Lightweight paravirtualization: trap instructions

 With which trappable instruction should be replace sensitive
and unprivileged ones?
 SWI: Sofware Interrupt, normally

used for syscalls → traps
● Only 24 bits to encode the instruction to emulated

(type + operands) → not enough space

 SWI in supervisor mode, LDC/STC in user mode
● Load/Store from coprocessors 1-6 (traps)

https://www.scss.tcd.ie/~
waldroj/3d1/arm_arm.pdf
 - page A4-210
 - page A3-31

cond SWI Operands

cond LDC Operands

cond STC Operands

Bit 31 Bit 28] Bit 24] Bit 0]

https://www.scss.tcd.ie/~waldroj/3d1/arm_arm.pdf
https://www.scss.tcd.ie/~waldroj/3d1/arm_arm.pdf

50

KVM/ARM
Instructions encoding

 Group 0: Status register access instructions (5 in total)

 Groups 2 – 12: Sensitive load-stores

 Groups 14 & 15: Sensitive data processing

Sensitive, unprivileged instructions to encode classified into 15 groups:

cond SWI Inst. index
Group index

= 0
Bit 24] Bit 0]Bit 20]

Inst. operands

Bit 18]

cond SWI Inst. index
Group index

= 14 Inst. operands

cond SWI
Group index

= 15
Inst. operandsInst. index

Bit 24] Bit 0]Bit 20] Bit 16]

Inst. index(I bit set)

(I bit clear)

51

Summary

Source:
textbook

52

Readings

 Bugnion, Edouard, et al. "Disco: Running commodity
operating systems on scalable multiprocessors." ACM
Transactions on Computer Systems (TOCS) 15.4 (1997): 412-
447.

 Barham, Paul, et al. "Xen and the art of virtualization." ACM
SIGOPS operating systems review. Vol. 37. No. 5. ACM, 2003.

 Chisnall, David. The definitive guide to the xen hypervisor.
Pearson Education, 2008.

 Dall, Christofer, and Jason Nieh. "KVM for ARM." Proceedings
of the 12th Ottawa Linux Symposium (2010).

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

