ECE 5984 Virtualization Technologies

Virtualization without Hardware Support

Pierre Olivier

Introduction

Some ISA fail to meet the constraints of the Popek & Goldberg theorem

• No VMM relying purely on direct execution + trap-and-emulate can be built on these ISA

Some systems circumvent these ISA limitation to build a VMM

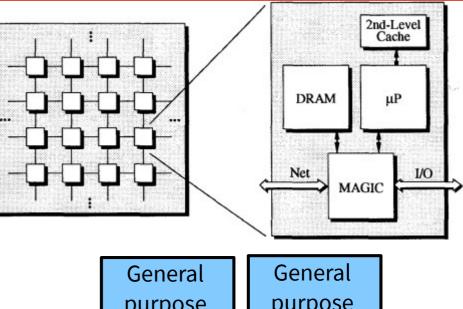
- Trade-off some of Popek & Goldberg criteria (performance/equivalence/safety)
- Disco (MIPS, 1997)
- Vmware Workstation (x86-32, 1999)
- Xen (x86-32, 2003)
- KVM for ARM (ARMv5/v6, 2010)
 - Don't mix it up with ARM/KVM which is for ARM ISA versions with hardware support for virtualization!

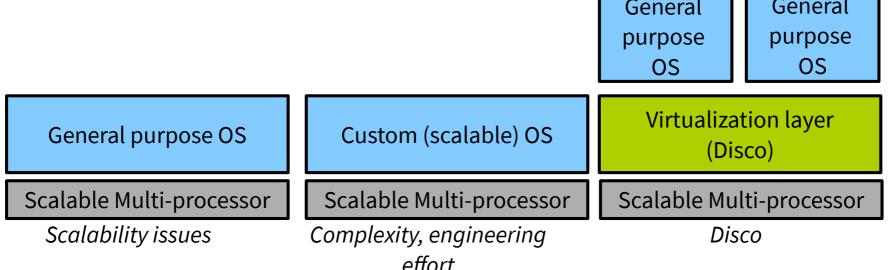
Outline

- 1) Disco (MIPS, 1997)
- 2) Vmware Workstation (x86-32, 1999)
- 3) Xen (x86-32, 2003)
- 4) KVM/ARM (ARMv6/v7/v8, 2010)

Outline

1) Disco (MIPS, 1997)


- **2)** Vmware Workstation (x86-32, 1999)
- 3) Xen (x86-32, 2003)
- 4) KVM/ARM (ARMv5/v6, 2010)


Kuskin, Jeffrey, et al. "The stanford flash multiprocessor." ACM SIGARCH Computer Architecture News. Vol. 22. No. 2. IEEE Computer Society Press, 1994.

Disco

Goal: run commodity OS on scalable multi-processors

Stanford FLASH processor (MIPS)

Bugnion, Edouard, et al. "Disco: Running commodity operating systems on scalable multiprocessors." ACM Transactions on Computer Systems (TOCS) 15.4 (1997): 412-447. Govil, Kinshuk, et al. "Cellular Disco: Resource management using virtual clusters on shared-memory multiprocessors." ACM SIGOPS Operating Systems Review. Vol. 33. No. 5. ACM, 1999.

Disco Adherence to Popek & Goldberg criterias

Equivalence:

- Need to *rewrite OS sources* (IRIX) to relocate the kernel from KSEG0 to KSEG
 - It means *recompilation*

Region	Base	Length	Access K,S,U	MMU	Cache	Source:
USEG	0x0000 0000	2 GB	√,√ √	mapped	cached	textbook
KSEG0	0x8000 0000	512 MB	√,x,x	unmapped	cached	
KSEG1	0xA000 0000	512 MB	√,x,x	unmapped	uncached	
KSSEG	0xC000 0000	512 MB	✓,√,x	mapped	cached	
KSEG3	0xE000 0000	512 MB	√,x,x	mapped	cached	

MIPS has 3 levels of execution: kernel (most privileged), supervisor, and user

- Disco hypervisor in kernel mode
- Guest OS in supervisor mode (shifted from kernel mode)
- Guest applications in user mode
- That way, hypervisor is protected from the guest, and guest OS is protected from applications

Disco Adherence to Popek & Goldberg criterias (2)

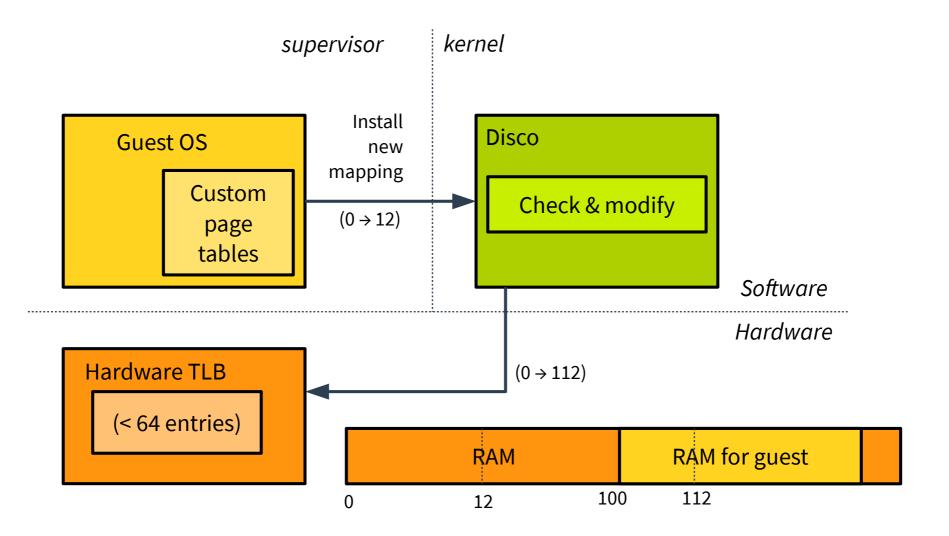
Safety

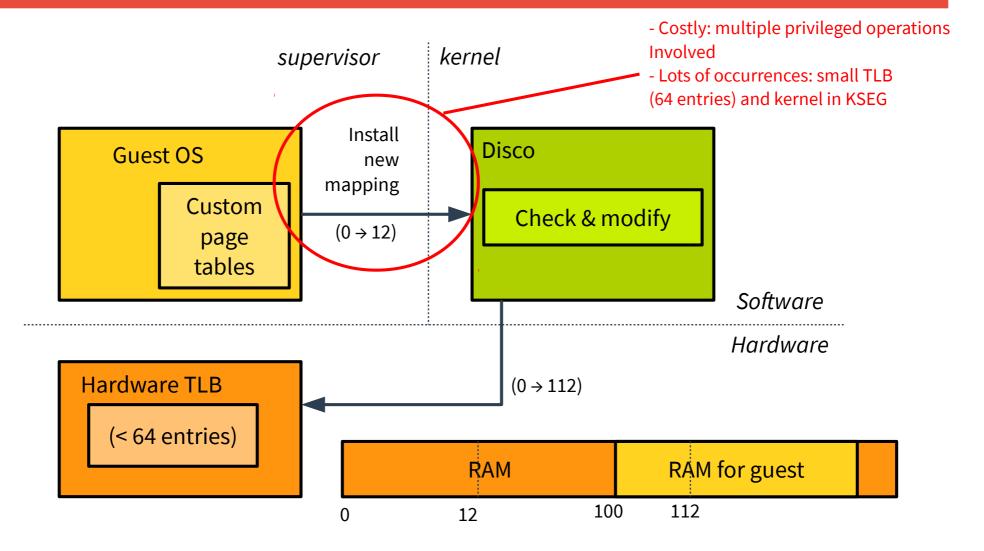
- Relies on virtual memory protection and MIPS execution modes (Kernel, Supervisor, User)
 - Protect VMM from VM
 - Protect guest OS from applications

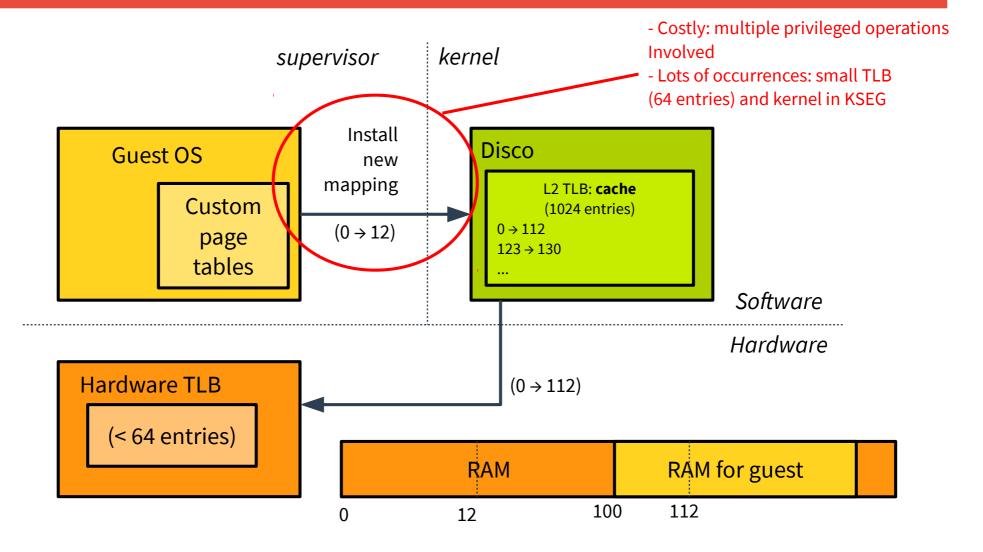
Performance

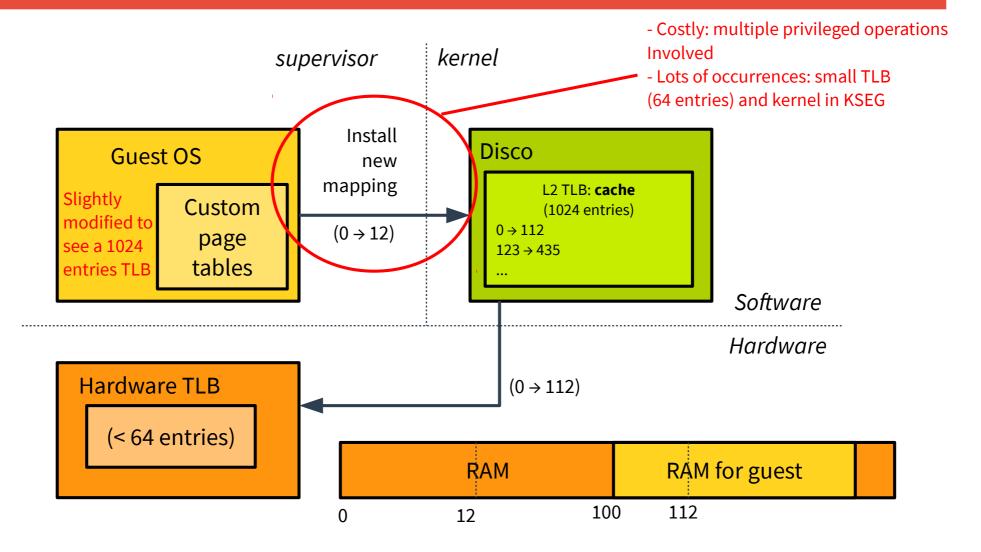
- Most code should run directly and VMM handles trap efficiently → does not hold on MIPS
 - Special memory page to replace read-only privileged registers
 - Hypercalls
 - Larger TLB

MIPS has privileged registers only accessible from kernel mode, that the guest OS expects to be able to manipulate

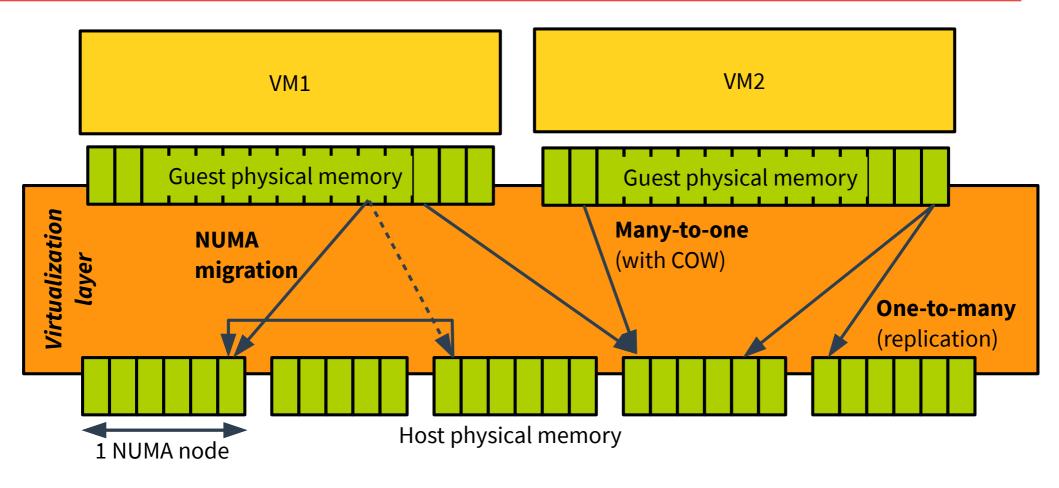

- 1 trap / register access is unacceptable
- Frequently accessed privileged registers are set in dedicated special memory pages
 - Guest OS is rewritten to access this page rather than the original register


Disco implements hypercalls


- Synchronous call from the rewritten guest OS to the VMM
 - Similar to an application making a *system call* to an OS
- Ex: hypercall when the guests OS put a page in its free-list
 - Instructs the VMM that the guest is not using the page (for now) so it can be allocated to another VM


MIPS has a software TLB

- Managed by the OS: on TLB miss a handler is called an the OS is responsible for inserting the mapping into the TLB
 - OS defines its own page table format, walked in the handler to resolve and insert the mapping
- When running with virtualization, a TLB miss traps to the hypervisor
 - The hypervisor cannot install the new mapping itself because it is unaware of the guest page table format
 - Hypervisor needs to call the guest OS TLB miss handler, which (tries to) install the mapping
 - ➔ Traps to the hypervisor for verification and remapping



Disco Physical memory virtualization

All done in a *completely transparent way* from the guest OS point of view

- Enhanced scalability for commodity OS

Outline

1 Disco (MIPS, 1997)

2) Vmware Workstation (x86-32, 1999)

- 3) Xen (x86-32, 2003)
- 4) KVM for ARM (ARMv5/v6, 2010)

Goal: running *totally unmodified* OS on x86-32

• Using a type-II (hosted) hypervisor with Linux or Windows host OS

Equivalence

- ◆ X86-32 fails P&G theorem
- Hybrid virtualization: Vmware workstation combines direct execution with *dynamic binary translation* (fast emulation/interpretation)

Safety

- Use segment truncation for isolation
- Focus on a subset of x86-32 instruction to run specific guest OS

Performance

- Goal: run near native speed, worst case same performance as previous generation CPUs
- VMWare offers full equivalence at the cost of performance (DBT, MMU virtualization)

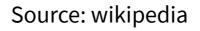
Vmware Workstation X86-32

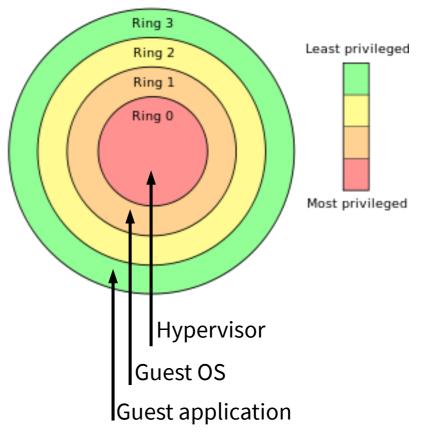
Native execution mode: protected mode

• Also legacy execution modes real, system management, v8086

In protected mode, current privilege level (cpl)

- ♦ Kernel: %cpl = 0
- ◆ User: %cpl = 3
- Iopl bits in FLAGS register optionally enable user code to disable interrupts


Implements both segmentation and paging


- Code (%cs), stack (%ss), data (%ds) and extra (%es, %fs, %gs) segment registers
- 3 level page tables rooted at %cr3 with hardware TLB
- Logical address \rightarrow [segmentation] \rightarrow linear address \rightarrow [paging] \rightarrow physical address

Vmware Workstation X86-32

With Vmware:

- Hypervisor runs in ring 0
- Guest OS runs in ring 1, *de-privileged* from ring0
- Application runs in ring 3
 - Guest OS is protected from applications through the page table access bits

When to use direct execution, when to interpret

Input:Current state of the virtual CPUOutput:True if the direct execution subsystem may be used;
False if binary translation must be used instead

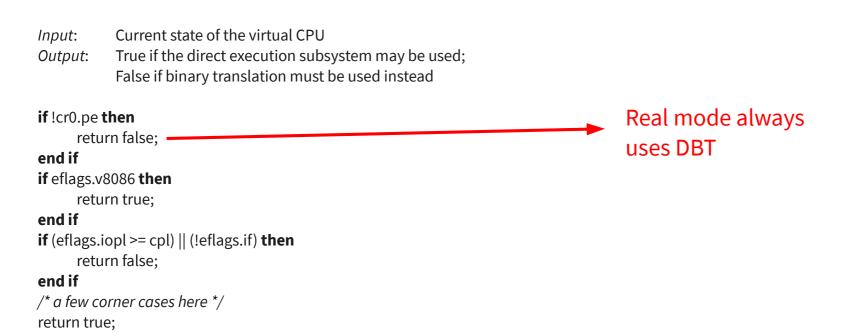
if !cr0.pe then

return false;

end if

if eflags.v8086 then

return true;


end if

if (eflags.iopl >= cpl) || (!eflags.if) then
 return false;

end if

```
/* a few corner cases here */
return true;
```

When to use direct execution, when to interpret

When to use direct execution, when to interpret

V8086 mode always

uses direct execution

Input: Output:	Current state of the virtual CPU True if the direct execution subsystem may be used; False if binary translation must be used instead
end if if eflags.v8 retui end if if (eflags.id retui end if	rn false; 3086 then rn true; opl >= cpl) (!eflags.if) then rn false; <i>rner cases here */</i>

When to use direct execution, when to interpret

Input: Output:	Current state of the virtual CPU True if the direct execution subsystem may be used; False if binary translation must be used instead
if !cr0.pe	
reti	ırn false;
end if	
if eflags.v	78086 then
reti	ırn true;
end if	
if (eflags.	iopl >= cpl) (!eflags.if) then
retu	Irn false;
end if	
/* a few c	orner cases here */
return tru	

If we can disable interrupts, use DBT - i.e. running kernel code - but also user code with iopl bits

Vmware Workstation Dynamic Binary Translation

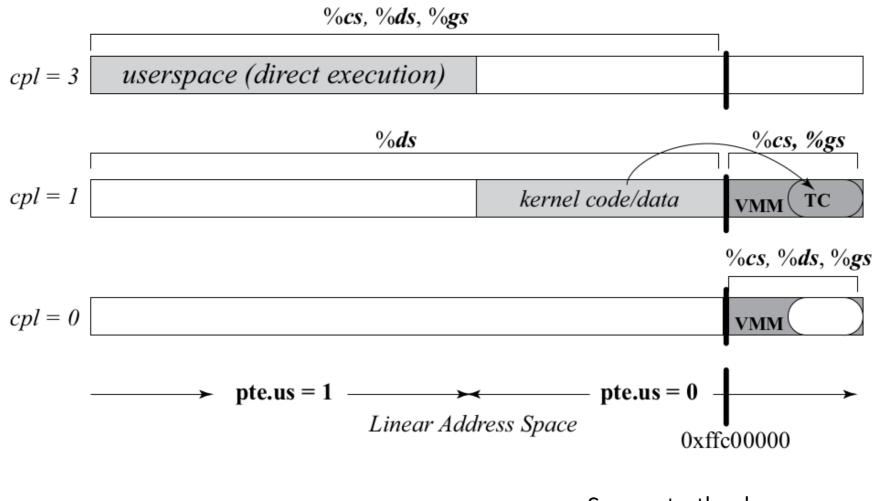
Input: Current state of the virtual CPU
Output: True if the direct execution subsystem may be used;
False if binary translation must be used instead
if !cr0.pe then
 return false;
end if
if eflags.v8086 then
 return true;

Long story short: use Dynamic Binary Translation when running in guest-supervisor mode and Direct Execution when running in guest-user mode

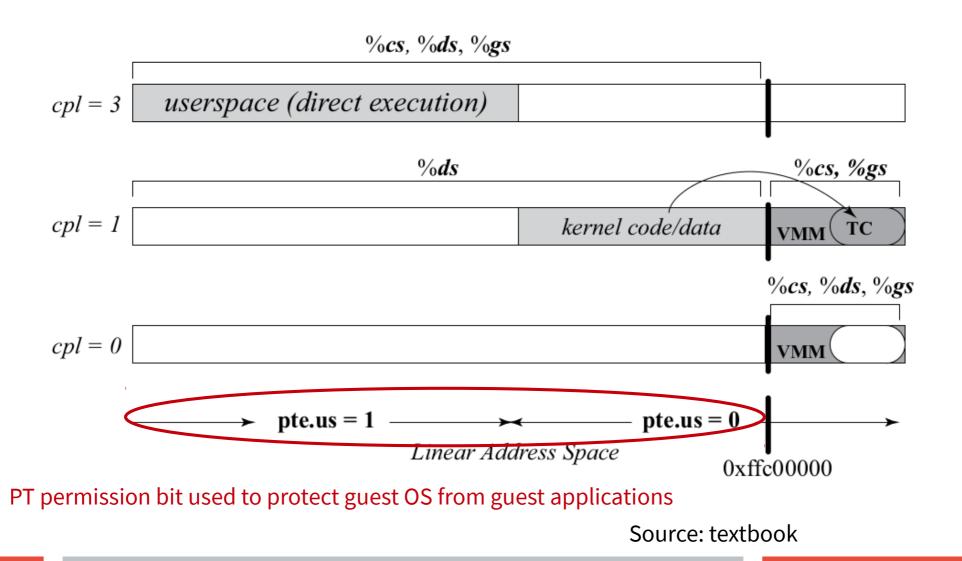
Dynamic Binary Translation

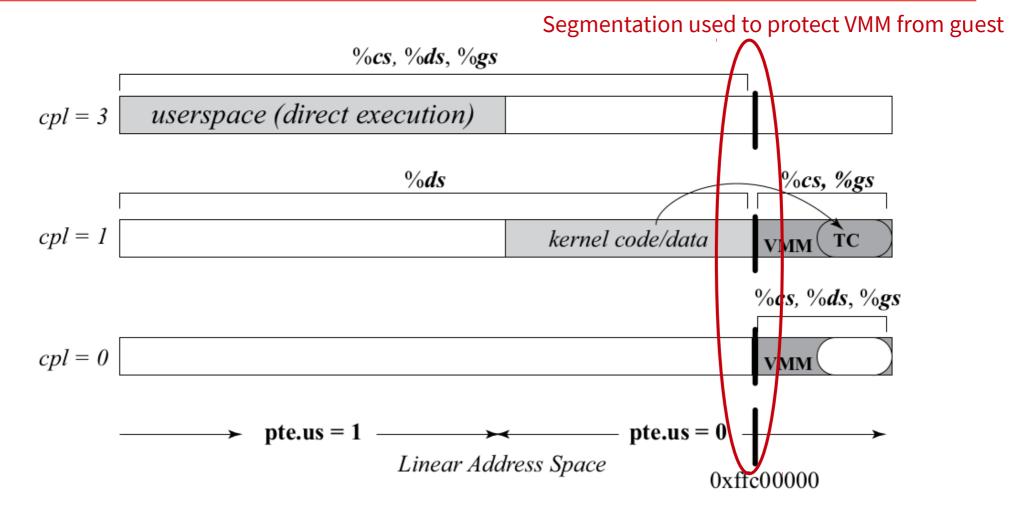
if (eflags.iopl >= cpl) || (!eflags.if) then

return false;

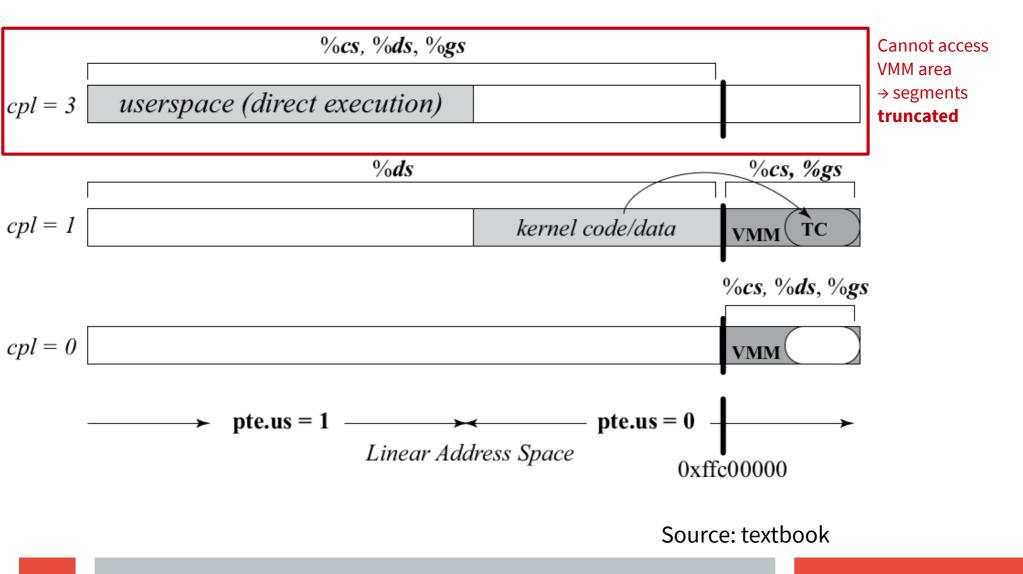

/* a few corner cases here */

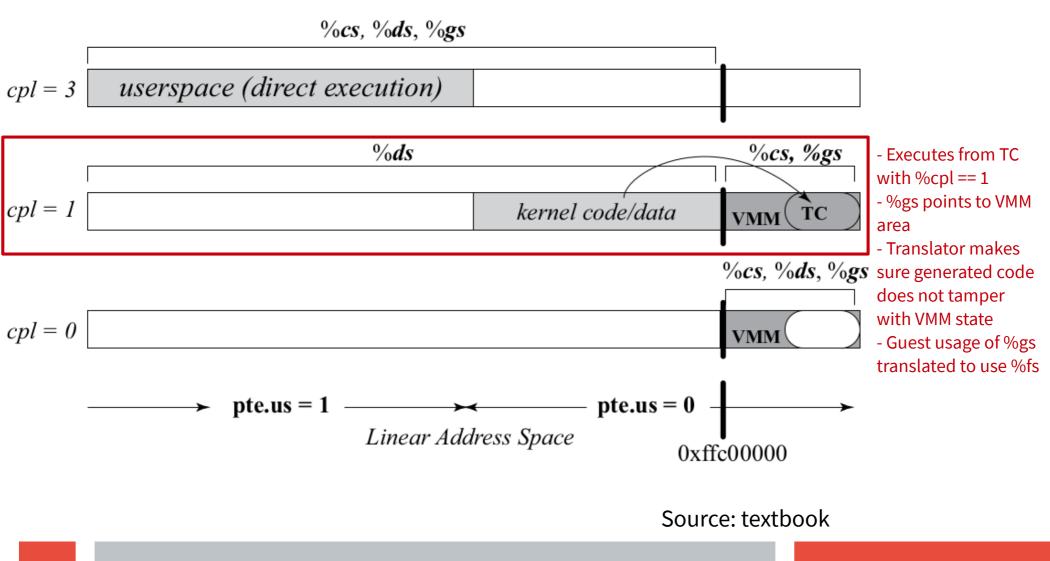
- Translates *dynamically* (at runtime), ahead of time, guest instructions, replacing privileged operations with trap instructions
- Unit of translation: basic bloc rather than a single instruction
- Translation cache and heavy optimizations

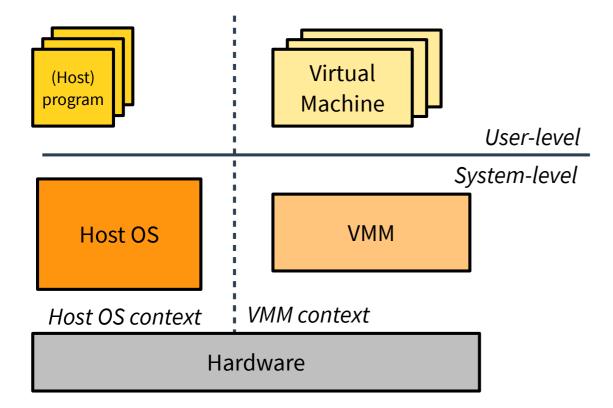

end if

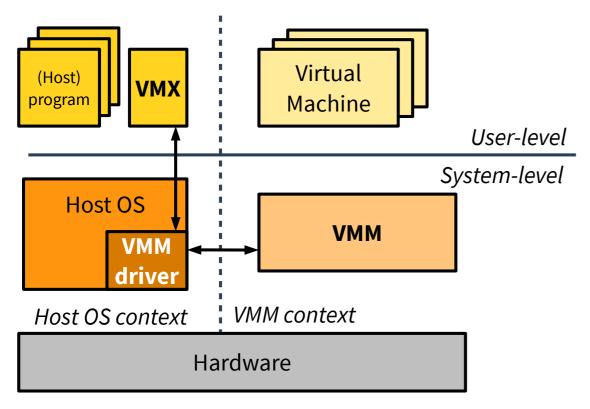

end if

return true:




Source: textbook

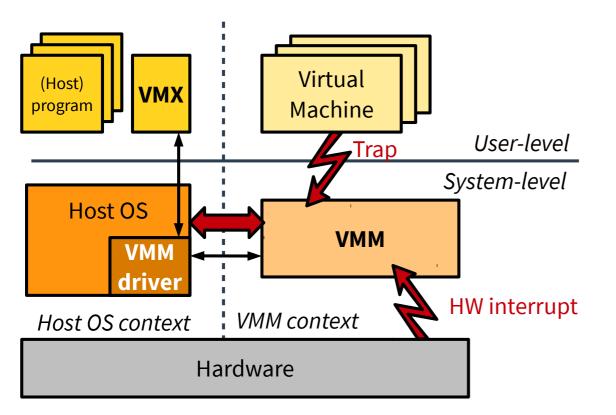

Source: textbook


Vmware Workstation Hypervisor and host OS coexistence

Vmware VMM has full control of the CPU when executing a VM

Vmware Workstation Hypervisor and host OS coexistence

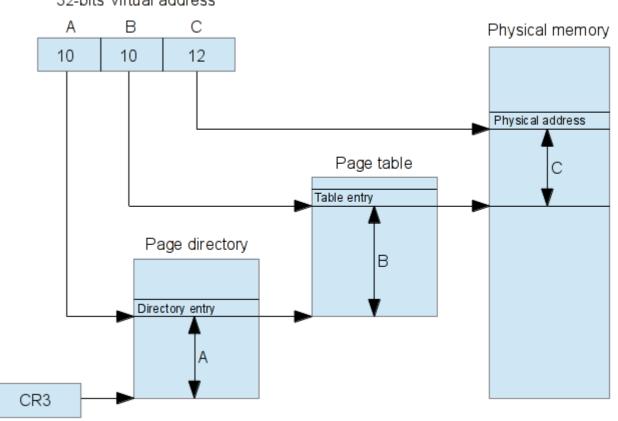
Vmware VMM has full control of the CPU when executing a VM



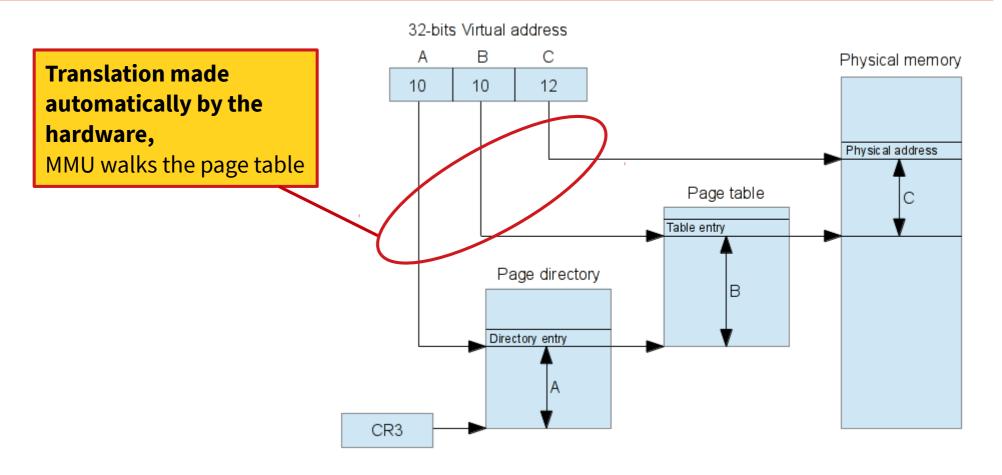
Adapted from textbook

- Host user-space program
 VMX for management
 and I/O emulation
- Host kernel code (VMM driver)
- - Same privilege level as host
 OS but completely
 separated when running
 - Host OS paused and removed from virtual memory: world switch

Vmware Workstation Hypervisor and host OS coexistence


Vmware VMM has full control of the CPU when executing a VM

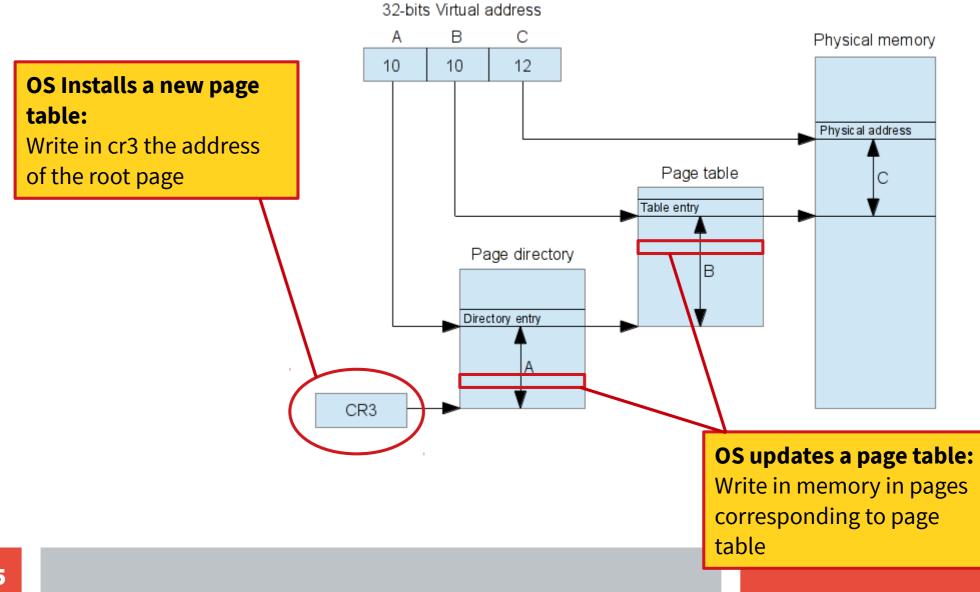
Adapted from textbook

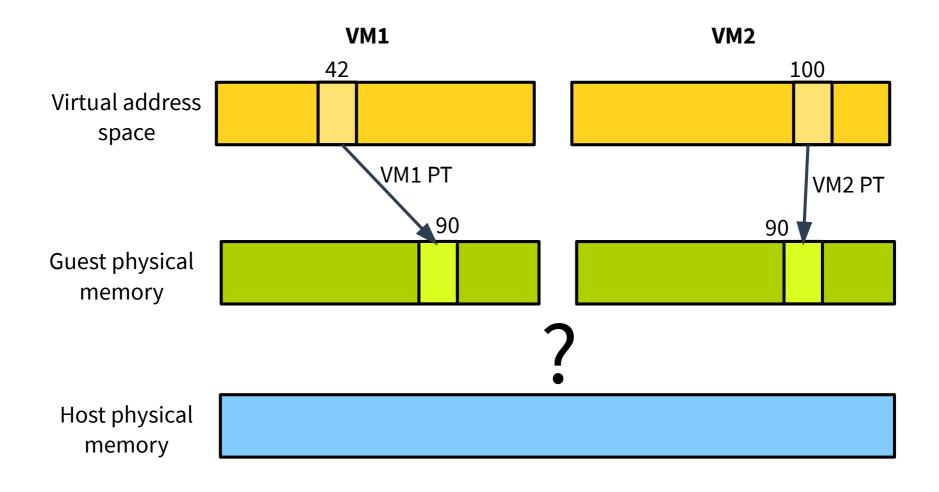

- Host user-space program
 VMX for management
 and I/O emulation
- Host kernel code (VMM driver)
- VMM
 - Same privilege level as host
 OS but completely
 separated when running
 - Host OS paused and removed from virtual memory: world switch

MMU virtualization: x86 paging



32-bits Virtual address

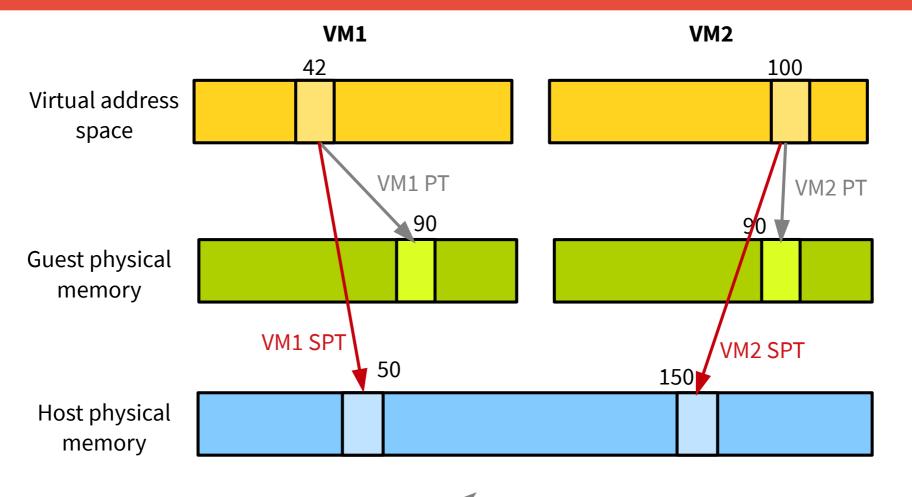

MMU virtualization: x86 paging


MMU virtualization: x86 paging

MMU virtualization: x86 paging

MMU virtualization: shadow page tables

Vmware Workstation


MMU virtualization: shadow page tables

Each VM installs a page table by mov to %cr3

- Privileged operation, traps to the hypervisor
 - *The hypervisor cannot install the guest page table as-is* because two VMs may want to map the same physical page
- The hypervisor actually installs a different page table on the hardware, corresponding to guest-virtual → host physical mapping
 - Called the *shadow page table*
- Guest page table (not used by the hardware), is mapped read-only
 - Each update (i.e. modification of the page table) will trap the the hypervisor (shadow/hidden page fault) to keep the shadow page table in sync
- Relatively high performance cost:
 - Shadow page faults: trap and overhead for page table updates
 - Regular page faults: also traps to VMM, overhead

Vmware Workstation

MMU virtualization: shadow page tables

Shadow page tables mapping, Actually used by the hardware Guest page tables, not used by the hardware, monitored by the VMM to keep SPT up to date

Outline

1 Disco (MIPS, 1997)

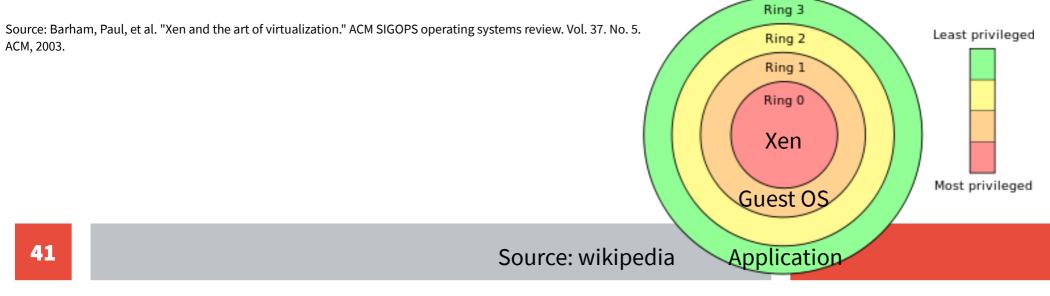
2) Vmware Workstation (x86-32, 1999)

3) Xen (x86-32, 2003)

4) KVM for ARM (ARMv5/v6, 2010)

Xen

Xen target x86-32


Approach: paravirtualization

- The guest OS sources can be (slightly) modified
 - Replace sensitive, unprivileged instructions with direct calls to the hypervisor: **hypercalls**
 - Need to recompile: loss of equivalence
 - Mainly targets Linux, NetBSD and Solaris also available, as well as an experimental port of Windows XP
- However applications can run unmodified

Paravirtualization: get performance at the cost of equivalence

[1] Barham, Paul, et al. "Xen and the art of virtualization." ACM SIGOPS operating systems review. Vol. 37. No. 5. ACM, 2003.

Memory Management	
Segmentation	Cannot install fully-privileged segment descriptors and cannot overlap with the top end of the linear
	address space.
Paging	Guest OS has direct read access to hardware page tables, but updates are batched and validated by
	the hypervisor. A domain may be allocated discontiguous machine pages.
CPU	
Protection	Guest OS must run at a lower privilege level than Xen.
Exceptions	Guest OS must register a descriptor table for exception handlers with Xen. Aside from page faults,
	the handlers remain the same.
System Calls	Guest OS may install a 'fast' handler for system calls, allowing direct calls from an application into
	its guest OS and avoiding indirecting through Xen on every call.
Interrupts	Hardware interrupts are replaced with a lightweight event system.
Time	Each guest OS has a timer interface and is aware of both 'real' and 'virtual' time.
Device I/O	
Network, Disk, etc.	Virtual devices are elegant and simple to access. Data is transferred using asynchronous I/O rings.
	An event mechanism replaces hardware interrupts for notifications.

Xen Xen architecture

Dom0:

- first VM to execute when Xen starts
- handles administrative tasks
- handles device emulation

Xen MMU virtualization: direct paging

- Contrary to shadow paging, guest page tables are used directly
 - However they are not setup and updated directly by the guest

Guest page tables are mapped read-only for the guest

- Guest installs/update page tables through *hypercalls*
 - mmu_update
 - Can be **batched** to avoid multiple traps such as with shadow paging

Guest directly requests guest-virtual to host-physical mapping

- In the hypervisor, the hypercall implementation *check* the validity of the requested mapping
 - Invariant enforced: only pages with writable type have a writable mapping in the PT

Guest allocated physical RAM

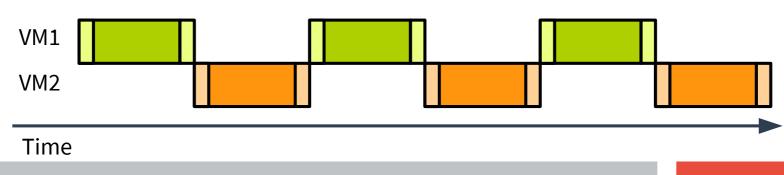
none	LN Page Table pages	Segment descriptor pages	Writable	

At boot time a guest registers its Interrupt Descriptor Table with Xen through the set_trap_table hypercall

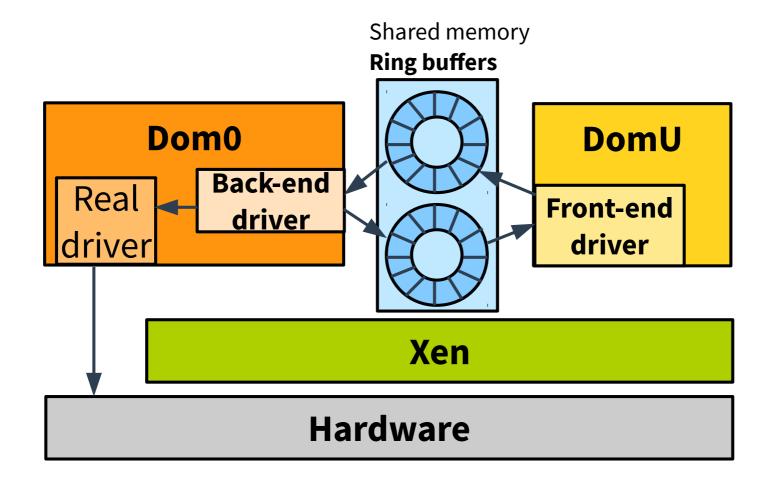
IDT contains handler addresses for each interrupt number

Xen installs its own IDT on the hardware

- Most interrupts are simply forwarded to the guest through its registered IDT
- (validated) guest syscall handler for fast syscall processing (no switch to ring 0)
- Guest page fault handler is modified to avoid accessing cr2 Xen


	Interrupt/ exception #	Description
ware	0	Divide error
5	1	Debug exception
	2	NMI
scall	3	Breakpoint
oid	14	Page fault
Von		
Xen handlers	128	System call (convention)
Guest handler		

Two types of time a Xen guest needs to be aware of:


- Wall-clock time: how much absolute time has passed since a given referential point in the past
 - Useful to keep track of the time of day, schedule operations in the future (ex: cron)
- Virtual time: how much time a guest has spent actually running
 - Useful to ensure fair scheduling within the guest
 - → The guest itself is not scheduled 100% of the time
 - 1PCPU, 2 domains with 1VCPU and 2 tasks each, each task supposed to be scheduled for an equal amount of time
 - → Each domain (i.e. VCPU) also scheduled for an equal amount of time
 - → This situation may occur: 1 task in each domain gets close 50% of the PCPU, other task gets close to nothing

Wall clock-time computed from:

• Initial system type, current system time, timestamp counter

Xen I/O virtualization: paravirtualized drivers

Outline

- **1**) Disco (MIPS, 1997)
- **2)** Vmware Workstation (x86-32, 1999)
- 3) Xen (x86-32, 2003)
- 4) KVM for ARM (ARMv5/v6, 2010)

ARM is not directly virtualizable

- *Lightweight paravirtualization*: script-based technique to automatically paravirtualize a guest OS
 - Replace sensitive instructions with hypervisor calls
 - Completely automated, **no guest-OS specific expertise required**
- Different from Xen virtualization requiring manual source modification and guest-OS specific expertise

Script tested successfully on multiple kernel versioms

- Only concerned by ASM files (C compilers do not generate privileged instructions)
- Work with regular expressions, replacing privileged instructions with trap instructions (exceptions)

KVM/ARM Lightweight paravirtualization: trap instructions

With which trappable instruction should be replace sensitive and unprivileged ones?

- SWI: Software Interrupt, normally used for syscalls → traps
 - Only 24 bits to encode the instruction to emulated (type + operands) → not enough space
- SWI in supervisor mode, LDC/STC in user mode
 - Load/Store from coprocessors 1-6 (traps)

https://www.scss.tcd.ie/~ waldroj/3d1/arm_arm.pdf

- page A4-210
- page A3-31

	cond	SWI	Operands	
	cond	LDC	Operands	
	cond	STC	Operands	
Bit	31 Bit 28] Bit 24]		Bit 0]

KVM/ARM Instructions encoding

Sensitive, unprivileged instructions to encode classified into 15 groups:

Group 0: Status register access instructions (5 in total)

cond	SWI	Group index = 0	Inst. index	Inst. operands
	Bit 24] Bit 20]	Bit 18]	Bit 0]

- Groups 2 12: Sensitive load-stores
- Groups 14 & 15: Sensitive data processing

(I bit set)	cond	SWI	Group index = 14	Inst. index	Inst. operands
(I bit clear)	cond	SWI	Group index = 15	Inst. index	Inst. operands
·		Bit 24]	Bit 20]	Bit 16] Bit 0]

Summary

	Disco	VMware Workstation	Xen	KVM for ARM
Architecture	MIPS	x86-32	x86-32	ARMv5
Hyp type	Туре-1	Type-2 (§4.2.4)	Type-1 with dom0 (§4.4)	Type-2 (§4.5)
Equivalence	Requires modi- fied kernel	Binary-compatible with selected kernels	Required mod- ified (paravirtu- alized) kernels (§4.3)	Required modi- fied (lightweight paravirtualized kernels (§4.5)
Safety	Via de-privileged execution using strictly virtual- ized resources	Via dynamic binary translation; isolation achieved via segment truncation	Via de-privileged execution with safe access to physical names	Via de-privileged execution using strictly virtual- ized resources
Performance	Via localized kernel changes and L2TLB (§4.1.2)	By combining direct execution (or appli- castions) with adap- tive dynamic binary translation (§4.2.3)	Via paravirtual- ization of CPU and IO interac- tions	Via paravirtual- ization of CPU and IO interac- tions

Source: textbook

Readings

- Bugnion, Edouard, et al. "Disco: Running commodity operating systems on scalable multiprocessors." ACM Transactions on Computer Systems (TOCS) 15.4 (1997): 412-447.
- Barham, Paul, et al. "Xen and the art of virtualization." ACM SIGOPS operating systems review. Vol. 37. No. 5. ACM, 2003.
- Chisnall, David. The definitive guide to the xen hypervisor. Pearson Education, 2008.
- Dall, Christoffer, and Jason Nieh. "KVM for ARM." Proceedings of the 12th Ottawa Linux Symposium (2010).