
Unikernels

Pierre Olivier

ECE 5984 Virtualization Technologies

2

Unikernels

unikernel

Hypervisor

Hypervisor

3

Library Operating Systems

 Overheads of regular OS associated with their fundamentals design
principles (protection, modularity, generality)

 Exokernel: separation of resource protection (exokernel) from
management (libOS)
 Allows specialization of system services,

tailored for each application

 LibOS accesses the hardware through the
exokernel

 Problem: drivers

 Unikernels are LibOS for the cloud
 The hypervisor plays the role of the Exokernel

 Drivers: can use PV drivers / direct access through SR-IOV

https://www.sigarch.org/leave-your-os-at-home-the-rise-of-library-operating-systems/

Engler, Dawson R., and M. Frans Kaashoek. Exokernel: An operating system architecture for application-level resource management. Vol. 29. No. 5. ACM, 1995.

4

Unikernels
Presentation

 Application + libraries + thin OS layer compiled into a single
binary executed as a kernel guest on top of an hypervisor
 Packs at compile time only what is needed

● Of course libraries ...

● … but also OS services (filesystem, network stack, drivers, etc.) → libOS ...

● … as well as configuration

 Small attack surface

 Reduced resource usage (disk/RAM)

 Fast boot/destruction time

5

Unikernels
Presentation (2)

 Fundamental properties:
 Single process: one unikernel → one process

● No support for fork - want to run another process? run another unikernel

● No need to implement a complex scheduler → rely on the hypervisor VCPU scheduler and
avoid redundancy

 Single user: no privilege separation between application and kernel,
everything runs with full privileges

● That’s okay there is only a single process per unikernel

 Single address-space: application and kernel share the same address space
● In combination with the single user property, reduces the cost of world switch on system

calls → they become common function calls

6

Unikernels
Presentation (3)

 Application + libraries + thin OS layer compiled into a single binary executed as a kernel
guest on top of an hypervisor
 Packs only what is needed

● Of course libraries ...

● … but also OS services (filesystem, network stack, drivers, etc.) → libOS

● Small attack surface

● Reduced resource usage (disk/RAM)

● Fast boot time

 Fundamental properties:
 Single process: one unikernel → one process

● No support for fork - want to run another process? run another unikernel

● No need to implement a complex scheduler → rely on the hypervisor VCPU scheduler and avoid scheduling redundancy

 Single user: no privilege separation between application and kernel, everything runs with full privileges
● That’s okay there is only a single process per unikernel

 Single address-space: application and kernel share the same address space
● In combination with the single user property, reduces the cost of world switch on system calls → they become common function

calls

Security, performance, and
cost reduction benefits

7

Unikernels
Applications

 Server applications

 Cloud services, on-demand micro-services, SaaS/FaaS
 Large monolithic application decomposed into set of single-purpose applications communicating via the

network and evolving independently
● Simplicity, ease of development/deployment, scalability through modularity

 Network Function Virtualization in distributed environments
 Ex: edge computing

 IoT
 High security & low resource consumption demands

 HPC
 High performance demands

 Reduction of OS interference on compute workload

 Unikernels are still in a relative ‘research’ state

8

Unikernels
Unikernel models

 2 main classes: legacy and clean-slate

 Legacy:
 Rumprun (C/C++/Ruby/Go/Python/etc.)

 Osv (C/C++/Java/Lua/Go)

 IncludeOS (C/C++)

 HermitCore (C/C++/Fortran/Go)

 Etc.

 Clean-slate → using type-safe languages
 MirageOS (Ocaml)

 HalVM (Haskell)

 LING (Erlang)

Tools:
- unik: automate porting a legacy
 application
- solo5/ukvm: minimal hypervisor
 for unikernels

9

Unikernels
Current limitations

 Existing applications support
 Clean slate unikernels: need to rewrite the entire application!

 Legacy unikernels: better but not ideal
● Still need to recompile

● No support for fork()

 Debugging is dificult
 Generally no access to tools such as GDB

10

Unikernels
Links & literature

 General info about unikernels, multiple models presented: http://unikernel.org/

 Important papers:
 Manco, Filipe, et al. "My VM is Lighter (and Safer) than your Container." Proceedings of the 26th

Symposium on Operating Systems Principles. ACM, 2017.

 Madhavapeddy, Anil, et al. "Unikernels: Library operating systems for the cloud." Acm Sigplan
Notices. Vol. 48. No. 4. ACM, 2013.

 Madhavapeddy, Anil, et al. "Jitsu: Just-In-Time Summoning of Unikernels." NSDI. 2015.

 Martins, Joao, et al. "ClickOS and the art of network function virtualization." Proceedings of the 11th
USENIX Conference on Networked Systems Design and Implementation. USENIX Association, 2014.

 Tsai, Chia-Che, et al. "Cooperation and security isolation of library OSes for multi-process
applications." Proceedings of the Ninth European Conference on Computer Systems. ACM, 2014.

 Porter, Donald E., et al. "Rethinking the library OS from the top down." ACM SIGPLAN Notices. Vol. 46.
No. 3. ACM, 2011.

http://unikernel.org/

11

Unikernels
Links & literature (2)

 MirageOS: https://mirage.io/, https://github.com/mirage

 Rump: http://rumpkernel.org/, https://github.com/rumpkernel/rumprun

 Osv: http://osv.io/, https://github.com/cloudius-systems/osv

 IncludeOS: http://www.includeos.org/,
https://github.com/hioa-cs/IncludeOS

 HermitCore: http://www.hermitcore.org/,
https://github.com/RWTH-OS/HermitCore

 HalVM: https://galois.com/project/halvm/ ,
https://github.com/GaloisInc/HaLVM

 LING: http://erlangonxen.org/, https://github.com/cloudozer/ling

https://mirage.io/
https://github.com/mirage
http://rumpkernel.org/
https://github.com/rumpkernel/rumprun
http://osv.io/
https://github.com/cloudius-systems/osv
http://www.includeos.org/
https://github.com/hioa-cs/IncludeOS
http://www.hermitcore.org/
https://github.com/RWTH-OS/HermitCore
https://galois.com/project/halvm/
https://github.com/GaloisInc/HaLVM
http://erlangonxen.org/
https://github.com/cloudozer/ling

12

Unikernels
Links & literature (3)

 Unikernels profiling
 Xen: Schmidt, Florian. "uniprof: A Unikernel Stack Profiler." Proceedings of

the SIGCOMM Posters and Demos. ACM, 2017.

 Xen (MirageOS):
http://www.brendangregg.com/blog/2016-01-27/unikernel-profiling-from-d
om0.html

 KVM (HermitCore) – Xray:
https://github.com/RWTH-OS/HermitCore/tree/master/usr/xray

http://www.brendangregg.com/blog/2016-01-27/unikernel-profiling-from-dom0.html
http://www.brendangregg.com/blog/2016-01-27/unikernel-profiling-from-dom0.html
https://github.com/RWTH-OS/HermitCore/tree/master/usr/xray

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

