
Unikernels

Pierre Olivier

ECE 5984 Virtualization Technologies

2

Unikernels

unikernel

Hypervisor

Hypervisor

3

Library Operating Systems

 Overheads of regular OS associated with their fundamentals design
principles (protection, modularity, generality)

 Exokernel: separation of resource protection (exokernel) from
management (libOS)
 Allows specialization of system services,

tailored for each application

 LibOS accesses the hardware through the
exokernel

 Problem: drivers

 Unikernels are LibOS for the cloud
 The hypervisor plays the role of the Exokernel

 Drivers: can use PV drivers / direct access through SR-IOV

https://www.sigarch.org/leave-your-os-at-home-the-rise-of-library-operating-systems/

Engler, Dawson R., and M. Frans Kaashoek. Exokernel: An operating system architecture for application-level resource management. Vol. 29. No. 5. ACM, 1995.

4

Unikernels
Presentation

 Application + libraries + thin OS layer compiled into a single
binary executed as a kernel guest on top of an hypervisor
 Packs at compile time only what is needed

● Of course libraries ...

● … but also OS services (filesystem, network stack, drivers, etc.) → libOS ...

● … as well as configuration

 Small attack surface

 Reduced resource usage (disk/RAM)

 Fast boot/destruction time

5

Unikernels
Presentation (2)

 Fundamental properties:
 Single process: one unikernel → one process

● No support for fork - want to run another process? run another unikernel

● No need to implement a complex scheduler → rely on the hypervisor VCPU scheduler and
avoid redundancy

 Single user: no privilege separation between application and kernel,
everything runs with full privileges

● That’s okay there is only a single process per unikernel

 Single address-space: application and kernel share the same address space
● In combination with the single user property, reduces the cost of world switch on system

calls → they become common function calls

6

Unikernels
Presentation (3)

 Application + libraries + thin OS layer compiled into a single binary executed as a kernel
guest on top of an hypervisor
 Packs only what is needed

● Of course libraries ...

● … but also OS services (filesystem, network stack, drivers, etc.) → libOS

● Small attack surface

● Reduced resource usage (disk/RAM)

● Fast boot time

 Fundamental properties:
 Single process: one unikernel → one process

● No support for fork - want to run another process? run another unikernel

● No need to implement a complex scheduler → rely on the hypervisor VCPU scheduler and avoid scheduling redundancy

 Single user: no privilege separation between application and kernel, everything runs with full privileges
● That’s okay there is only a single process per unikernel

 Single address-space: application and kernel share the same address space
● In combination with the single user property, reduces the cost of world switch on system calls → they become common function

calls

Security, performance, and
cost reduction benefits

7

Unikernels
Applications

 Server applications

 Cloud services, on-demand micro-services, SaaS/FaaS
 Large monolithic application decomposed into set of single-purpose applications communicating via the

network and evolving independently
● Simplicity, ease of development/deployment, scalability through modularity

 Network Function Virtualization in distributed environments
 Ex: edge computing

 IoT
 High security & low resource consumption demands

 HPC
 High performance demands

 Reduction of OS interference on compute workload

 Unikernels are still in a relative ‘research’ state

8

Unikernels
Unikernel models

 2 main classes: legacy and clean-slate

 Legacy:
 Rumprun (C/C++/Ruby/Go/Python/etc.)

 Osv (C/C++/Java/Lua/Go)

 IncludeOS (C/C++)

 HermitCore (C/C++/Fortran/Go)

 Etc.

 Clean-slate → using type-safe languages
 MirageOS (Ocaml)

 HalVM (Haskell)

 LING (Erlang)

Tools:
- unik: automate porting a legacy
 application
- solo5/ukvm: minimal hypervisor
 for unikernels

9

Unikernels
Current limitations

 Existing applications support
 Clean slate unikernels: need to rewrite the entire application!

 Legacy unikernels: better but not ideal
● Still need to recompile

● No support for fork()

 Debugging is dificult
 Generally no access to tools such as GDB

10

Unikernels
Links & literature

 General info about unikernels, multiple models presented: http://unikernel.org/

 Important papers:
 Manco, Filipe, et al. "My VM is Lighter (and Safer) than your Container." Proceedings of the 26th

Symposium on Operating Systems Principles. ACM, 2017.

 Madhavapeddy, Anil, et al. "Unikernels: Library operating systems for the cloud." Acm Sigplan
Notices. Vol. 48. No. 4. ACM, 2013.

 Madhavapeddy, Anil, et al. "Jitsu: Just-In-Time Summoning of Unikernels." NSDI. 2015.

 Martins, Joao, et al. "ClickOS and the art of network function virtualization." Proceedings of the 11th
USENIX Conference on Networked Systems Design and Implementation. USENIX Association, 2014.

 Tsai, Chia-Che, et al. "Cooperation and security isolation of library OSes for multi-process
applications." Proceedings of the Ninth European Conference on Computer Systems. ACM, 2014.

 Porter, Donald E., et al. "Rethinking the library OS from the top down." ACM SIGPLAN Notices. Vol. 46.
No. 3. ACM, 2011.

http://unikernel.org/

11

Unikernels
Links & literature (2)

 MirageOS: https://mirage.io/, https://github.com/mirage

 Rump: http://rumpkernel.org/, https://github.com/rumpkernel/rumprun

 Osv: http://osv.io/, https://github.com/cloudius-systems/osv

 IncludeOS: http://www.includeos.org/,
https://github.com/hioa-cs/IncludeOS

 HermitCore: http://www.hermitcore.org/,
https://github.com/RWTH-OS/HermitCore

 HalVM: https://galois.com/project/halvm/ ,
https://github.com/GaloisInc/HaLVM

 LING: http://erlangonxen.org/, https://github.com/cloudozer/ling

https://mirage.io/
https://github.com/mirage
http://rumpkernel.org/
https://github.com/rumpkernel/rumprun
http://osv.io/
https://github.com/cloudius-systems/osv
http://www.includeos.org/
https://github.com/hioa-cs/IncludeOS
http://www.hermitcore.org/
https://github.com/RWTH-OS/HermitCore
https://galois.com/project/halvm/
https://github.com/GaloisInc/HaLVM
http://erlangonxen.org/
https://github.com/cloudozer/ling

12

Unikernels
Links & literature (3)

 Unikernels profiling
 Xen: Schmidt, Florian. "uniprof: A Unikernel Stack Profiler." Proceedings of

the SIGCOMM Posters and Demos. ACM, 2017.

 Xen (MirageOS):
http://www.brendangregg.com/blog/2016-01-27/unikernel-profiling-from-d
om0.html

 KVM (HermitCore) – Xray:
https://github.com/RWTH-OS/HermitCore/tree/master/usr/xray

http://www.brendangregg.com/blog/2016-01-27/unikernel-profiling-from-dom0.html
http://www.brendangregg.com/blog/2016-01-27/unikernel-profiling-from-dom0.html
https://github.com/RWTH-OS/HermitCore/tree/master/usr/xray

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

