
Containers

Pierre Olivier

ECE 5984 Virtualization Technologies

2

Containers
Presentation

 Containers: process-level sandboxing technologies
 Enforced by the operating system

● Sometimes called OS level virtualization

Hardware

Host OS

Hypervisor

Guest OS

App

Hardware

Host OS

Binaries &
libraries

App

App

Binaries &
libraries

App

Binaries &
libraries

Traditional
virtualization

stack Containers

3

Containers
Presentation

OS

App

Hardware

OS

Binaries &
libraries

App App

Binaries &
libraries

App

Binaries &
libraries

Traditional
stack

ContainersHardware

 Containers: process-level sandboxing technologies
 Package application programs and dependencies

● One of the main benefits is ease of development/testing/deployment
➔ “Shipping containers”

4

Containers
Reason to be

Compiling HermitCore
on Ubuntu 16:04
(released
april 2016)
- perl version is
v5.22.1

5

Containers
Reason to be

Compiling HermitCore
on Debian 10 Buster
(testing, 2018)
- perl version is
v5.26.1

6

Containers
Reason to be

 Developing and running application X requires a complex set
of dependencies
 Libraries sources and/or binaries (ex: glibc, etc.)

 Build tools (ex: cmake, autotools, etc.)

 System tools (ex: perl, grep, etc.)

 All of these with sometimes very specific versions

 Demo!
 Backup video: http://bit.ly/2F31ofC

http://bit.ly/2F31ofC

7

Containers
Use cases

 Lightweight (low cost) & elastic virtualization
 Containers consume few resources and can be brought up/destroyed very

fast

 Cloud services such as Gmail and Facebook make extensive use of containers

 Development/testing
 Develop, build and test in a controlled, identical environment

 Deployment
 Same environment as the development one (repeatability)

● Can be deployed on any server/cloud supporting containers independently of the host
configuration

8

Containers
Fundamental principles

 Sandbox sofware running within the container
 Isolate the visibility it has on the system resources

 Control its resource access

9

Containers
Isolated resources visibility

 Filesystem/mount points (~chroot)
 Ex: can run a fedora-like rootfs on debian

 Container cannot see host/other containers file systems

 Network stack
 Container has its own IP, virtual bridged/routed network similar to VMs

 Processes
 Isolated process ID set, cannot see host/other containers processes

 IPC

 Hostname

 User IDs
 Can have root privileges inside container

In Linux:
Namespaces

10

Containers
Controlled resources access

 Memory
 Limits memory and swap usage

 CPU
 Limit CPU usage (can be for example 1.5 CPU) and CPU sets

 Control CFS quotas

 Block I/O
 Control throughput

In Linux:
Control groups

11

Containers
Diferent techrnologies

 Chroot (1982)
 Generally for unix-like OS, introduced in 1982 (BSD)

 Runtime switch to another rootfs

 Goal: testing installation and build system of BSD

 Chrooot isolates only the filesystem, what about isolating/controlling memory usage, network, I/O,
PIDs/processes, etc.

 FreeBSD Jails (2000)

 Solaris Zones (2004)

 LXC: Linux Containers (2008)
 High-level API controlling Linux internal mechanisms supporting containerization

● Namespaces and control groups

 Docker (2013)
 Another high-level API, was built on top of LXC, now using libcontainer

12

Container vs system-level virtual machrines

 Containers benefit:
 Lightweight

● Minimal resource usage for the virtualization layer
➔ All containers use the host kernel
➔ Minimal disk usage (ex: Docker default ubuntu 16.04 image is ~100 MB)

● Super-fast startup/shutdown time → “elasticity”
➔ Starting/shutting sown a process

 Per-host density

 Nesting

 VM benefits:
 Kernel versions and OS diversity

 Performance isolation

 Security

13

Containers vs unikernels

 Lightweightness
 Pros & cons for both technologies

 Security: advantage unikernels

 Compatibility: advantage containers

14

Containers
Links

 http://www.haifux.org/lectures/320/netLec8_final.pdf

 http://www.haifux.org/lectures/299/netLec7.pdf

 https://www.cl.cam.ac.uk/~lc525/files/Linux_Containers.pdf

 https://events.static.linuxfound.org/sites/events/files/eeus13
_bottomley.pdf

 http://ciecloud.csdn.net/2013/subject/07-track06-Jerome%20
Petazzoni.pdf

http://www.haifux.org/lectures/320/netLec8_final.pdf
http://www.haifux.org/lectures/299/netLec7.pdf
https://www.cl.cam.ac.uk/~lc525/files/Linux_Containers.pdf
https://events.static.linuxfound.org/sites/events/files/eeus13_bottomley.pdf
https://events.static.linuxfound.org/sites/events/files/eeus13_bottomley.pdf
http://ciecloud.csdn.net/2013/subject/07-track06-Jerome%20Petazzoni.pdf
http://ciecloud.csdn.net/2013/subject/07-track06-Jerome%20Petazzoni.pdf

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14

